FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study

In this paper, we consider the numerical discretization of elliptic eigenvalue problems by Finite Element Methods and its solution by a multigrid method. From the general theory of finite element and multigrid methods, it is well known that the asymptotic convergence rates become visible only if the mesh width h is sufficiently small, h ≤ h0. We investigate the dependence of the maximal mesh width h0 on various problem parameters such as the size of the eigenvalue and its isolation distance. In a recent paper (Sauter in Finite elements for elliptic eigenvalue problems in the preasymptotic regime. Technical Report. Math. Inst., Univ. Zürich, 2007), the dependence of h0 on these and other parameters has been investigated theoretically. The main focus of this paper is to perform systematic experimental studies to validate the sharpness of the theoretical estimates and to get more insights in the convergence of the eigenfunctions and -values in the preasymptotic regime.

[1]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[2]  S. Sauter,et al.  Finite Elements for Elliptic Eigenvalue Problems , 2008 .

[3]  R. Courant,et al.  Methoden der mathematischen Physik , .

[4]  Wolfgang Hackbusch,et al.  On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method , 1979 .

[5]  Ilio Galligani,et al.  Mathematical Aspects of Finite Element Methods , 1977 .

[6]  Irene Livshits An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the helmholtz operator , 2004, Numer. Linear Algebra Appl..

[7]  I. D. Parsons,et al.  A multigrid method for the generalized symmetric eigenvalue problem: Part I—algorithm and implementation , 1992 .

[8]  Serge Levendorskiĭ Asymptotic Distribution of Eigenvalues of Differential Operators , 1990 .

[9]  S. McCormick,et al.  Multigrid Methods for Differential Eigenproblems , 1983 .

[10]  A. Knyazev,et al.  Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .

[11]  Frank Schmidt,et al.  Adaptive Multigrid Methods for the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design , 2003 .

[12]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[13]  S. McCormick,et al.  Multigrid Methods for Nearly Singular Linear Equations and Eigenvalue Problems , 1997 .

[14]  I. Parsons,et al.  A multigrid method for the generalized symmetric eigenvalue problem: Part II—performance evaluation , 1992 .

[15]  A. Huber Methoden der mathematischen Physik, 2. Bd , 1939 .

[16]  Gabriel Wittum,et al.  A multigrid method for the computation of eigenmodes of closed water basins , 1992, IMPACT Comput. Sci. Eng..

[17]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[18]  Stefan A. Sauter,et al.  Elliptic Differential Equations , 2010 .

[19]  F. Brownell Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space , 1957 .

[20]  I. D. Parsons,et al.  Multigrid solution procedures for structural dynamics eigenvalue problems , 1992 .

[21]  Achi Brandt,et al.  Accuracy Properties of the Wave-Ray Multigrid Algorithm for Helmholtz Equations , 2006, SIAM J. Sci. Comput..

[22]  F. Brownell An extension of Weyl's asymptotic law for eigenvalues. , 1955 .