Gene Ontology for type III effectors: capturing processes at the host-pathogen interface.

[1]  J. Glasner,et al.  Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains , 2009, BMC Microbiology.

[2]  Sang Yeol Lee,et al.  The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2. , 2009, The Plant journal : for cell and molecular biology.

[3]  R. Terauchi,et al.  Emerging concepts in effector biology of plant-associated organisms. , 2009, Molecular plant-microbe interactions : MPMI.

[4]  S. Tullius,et al.  Impact of innate and adaptive immunity on rejection and tolerance. , 2008, Transplantation.

[5]  S. He,et al.  Suppression of the MicroRNA Pathway by Bacterial Effector Proteins , 2008, Science.

[6]  S. Robatzek,et al.  Breaking the barriers: microbial effector molecules subvert plant immunity. , 2008, Annual review of phytopathology.

[7]  J. Alfano,et al.  Phytopathogen type III effector weaponry and their plant targets. , 2008, Current opinion in plant biology.

[8]  Ping He,et al.  Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. , 2008, Cell host & microbe.

[9]  Y Wang,et al.  The emerging role of innate immunity in protection against HIV-1 infection. , 2008, Vaccine.

[10]  Jian-Min Zhou,et al.  Plant pathogenic bacterial type III effectors subdue host responses. , 2008, Current opinion in microbiology.

[11]  A. Collmer,et al.  A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae. , 2008, Molecular plant-microbe interactions : MPMI.

[12]  J. Dangl,et al.  The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. , 2008, Molecular plant-microbe interactions : MPMI.

[13]  C. Zipfel Pattern-recognition receptors in plant innate immunity. , 2008, Current opinion in immunology.

[14]  F. Shao Biochemical functions of Yersinia type III effectors. , 2008, Current opinion in microbiology.

[15]  Gail M Preston,et al.  Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. , 2008, Molecular plant-microbe interactions : MPMI.

[16]  Lihuang Zhu,et al.  Pseudomonas syringae Effector AvrPto Blocks Innate Immunity by Targeting Receptor Kinases , 2008, Current Biology.

[17]  P. He,et al.  Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology , 2007, Proceedings of the National Academy of Sciences.

[18]  M. Kelly,et al.  A C‐terminal class I PDZ binding motif of EspI/NleA modulates the virulence of attaching and effacing Escherichia coli and Citrobacter rodentium , 2007, Cellular microbiology.

[19]  S. He,et al.  The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. , 2007, The Plant journal : for cell and molecular biology.

[20]  J. Dixon,et al.  Interactions of bacterial effector proteins with host proteins. , 2007, Current opinion in immunology.

[21]  G. Martin,et al.  A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity , 2007, Nature.

[22]  G. Martin,et al.  A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. , 2007, The Plant journal : for cell and molecular biology.

[23]  F. Tian,et al.  A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity , 2007, Nature.

[24]  She Chen,et al.  A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. , 2007, Cell host & microbe.

[25]  J. Brodsky,et al.  Supplemental Data S 1 A J Domain Virulence Effector of Pseudomonas syringae Remodels Host Chloroplasts and Suppresses Defenses , 2022 .

[26]  A. Breitkreutz,et al.  Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. , 2007, Cell host & microbe.

[27]  She Chen,et al.  The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family , 2007, Science.

[28]  A. Vergunst,et al.  Exploitation of Eukaryotic Ubiquitin Signaling Pathways by Effectors Translocated by Bacterial Type III and Type IV Secretion Systems , 2007, PLoS pathogens.

[29]  Xiaoyan Tang,et al.  RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB , 2006, Proceedings of the National Academy of Sciences.

[30]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[31]  C. Myers,et al.  Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. , 2006, Molecular plant-microbe interactions : MPMI.

[32]  L. M. Schechter,et al.  Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. , 2006, Molecular plant-microbe interactions : MPMI.

[33]  G. Martin,et al.  Bacterial elicitation and evasion of plant innate immunity , 2006, Nature Reviews Molecular Cell Biology.

[34]  Sheng Yang He,et al.  A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease , 2006, Science.

[35]  J. Leong,et al.  Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling , 2006, Nature Reviews Microbiology.

[36]  Xiaoyan Tang,et al.  The Pseudomonas syringae pv. tomato DC3000 type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions. , 2006, Molecular plant-microbe interactions : MPMI.

[37]  R. Shimizu,et al.  A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. , 2006, Molecular plant-microbe interactions : MPMI.

[38]  G. Martin,et al.  A Bacterial Inhibitor of Host Programmed Cell Death Defenses Is an E3 Ubiquitin Ligase , 2006, Science.

[39]  O. White,et al.  Transposition Pathovars in Genes Involved in Virulence 1448 A Reveals Divergence among pv . phaseolicola Pseudomonas syringae Whole-Genome Sequence Analysis of , 2005 .

[40]  Xiaoyan Tang,et al.  Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  F. Tian,et al.  Pseudomonas syringae Type III Chaperones ShcO1, ShcS1, and ShcS2 Facilitate Translocation of Their Cognate Effectors and Can Substitute for Each Other in the Secretion of HopO1-1 , 2005, Journal of bacteriology.

[42]  M. G. Kim,et al.  Two Pseudomonas syringae Type III Effectors Inhibit RIN4-Regulated Basal Defense in Arabidopsis , 2005, Cell.

[43]  J. Dangl,et al.  The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Matt Nolan,et al.  Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Jeff H. Chang,et al.  A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Sjolander,et al.  Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. van Dijk,et al.  The hrpK Operon of Pseudomonas syringae pv. tomato DC3000 Encodes Two Proteins Secreted by the Type III (Hrp) Protein Secretion System: HopB1 and HrpK, a Putative Type III Translocator , 2005, Journal of bacteriology.

[48]  Anna R. Schneider,et al.  HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen‐induced necrosis associated with both compatible and incompatible plant interactions , 2004, Molecular microbiology.

[49]  S. He,et al.  A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Xiaoyan Tang,et al.  Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. , 2004, The Plant journal : for cell and molecular biology.

[51]  Lihuang Zhu,et al.  Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. , 2004, The Plant journal : for cell and molecular biology.

[52]  Alan Collmer,et al.  Pseudomonas syringae Type III Secretion System Targeting Signals and Novel Effectors Studied with a Cya Translocation Reporter , 2004, Journal of bacteriology.

[53]  Jack E. Dixon,et al.  Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector , 2003, Science.

[54]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Baker,et al.  A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection , 2003, Molecular microbiology.

[56]  V. Tam,et al.  The Pseudomonas syringae type III‐secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants , 2003, Molecular microbiology.

[57]  Michael J. Axtell,et al.  Initiation of RPS2-Specified Disease Resistance in Arabidopsis Is Coupled to the AvrRpt2-Directed Elimination of RIN4 , 2003, Cell.

[58]  J. Dixon,et al.  Biochemical characterization of the Yersinia YopT protease: Cleavage site and recognition elements in Rho GTPases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. Charkowski,et al.  A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome. , 2002, Molecular plant-microbe interactions : MPMI.

[60]  G. Martin,et al.  Two Distinct Pseudomonas Effector Proteins Interact with the Pto Kinase and Activate Plant Immunity , 2002, Cell.

[61]  Alan Collmer,et al.  Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  David Mackey,et al.  RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis , 2002, Cell.

[63]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[64]  J. Bliska,et al.  YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF‐α production and downregulation of the MAP kinases p38 and JNK , 1998, Molecular microbiology.

[65]  A. Collmer,et al.  The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death , 1997, Journal of bacteriology.

[66]  J. Bliska,et al.  Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions , 1997, The EMBO journal.

[67]  H. Wolf‐Watz,et al.  Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. , 1995, The EMBO journal.

[68]  Simonich Mt,et al.  A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. phaseolicola. , 1995 .

[69]  A. Bent,et al.  RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. , 1993, The Plant cell.

[70]  F. Carland,et al.  The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene , 1992, Journal of bacteriology.

[71]  C. Napoli,et al.  Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea , 1987, Journal of bacteriology.

[72]  Alan Collmer,et al.  A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. , 2009, Molecular plant-microbe interactions : MPMI.

[73]  Samuel I. Miller,et al.  Salmonellae interplay with host cells , 2008, Nature Reviews Microbiology.

[74]  C. Sasakawa,et al.  The versatility of Shigella effectors , 2008, Nature Reviews Microbiology.

[75]  U. Bonas,et al.  Type III secretion chaperones ShcS1 and ShcO1 from Pseudomonas syringae pv. tomato DC3000 bind more than one effector. , 2005, Microbiology.

[76]  B. Staskawicz,et al.  Identification of a new Arabidopsis disease resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. , 1996, Molecular plant-microbe interactions : MPMI.

[77]  J. Dangl,et al.  The avrRpm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. , 1995, Molecular plant-microbe interactions : MPMI.