Finiteness properties of cubulated groups

Abstract We give a generalized and self-contained account of Haglund–Paulin’s wallspaces and Sageev’s construction of the CAT(0) cube complex dual to a wallspace. We examine criteria on a wallspace leading to finiteness properties of its dual cube complex. Our discussion is aimed at readers wishing to apply these methods to produce actions of groups on cube complexes and understand their nature. We develop the wallspace ideas in a level of generality that facilitates their application. Our main result describes the structure of dual cube complexes arising from relatively hyperbolic groups. Let $H_1,\ldots, H_s$ be relatively quasiconvex codimension-1 subgroups of a group $G$ that is hyperbolic relative to $P_1, \ldots, P_r$. We prove that $G$ acts relatively cocompactly on the associated dual CAT(0) cube complex $C$. This generalizes Sageev’s result that $C$ is cocompact when $G$ is hyperbolic. When $P_1,\ldots, P_r$ are abelian, we show that the dual CAT(0) cube complex $C$ has a $G$-cocompact CAT(0) truncation.

[1]  Graham A. Niblo,et al.  Coxeter Groups act on CAT(0) cube complexes , 2003 .

[2]  J. Hass,et al.  Homotopy equivalence and hemeomorphism of 3-manifolds , 1992 .

[3]  Cornelia Drutu,et al.  Tree-graded spaces and asymptotic cones of groups , 2004 .

[4]  Michah Sageev,et al.  Ends of Group Pairs and Non‐Positively Curved Cube Complexes , 1995 .

[5]  Limit Groups are Cat(0) , 2004, math/0410198.

[6]  Nicolas Bergeron,et al.  Hyperplane sections in arithmetic hyperbolic manifolds , 2011, J. Lond. Math. Soc..

[7]  Jon McCammond Geometric and Cohomological Methods in Group Theory: Constructing non-positively curved spaces and groups , 2009 .

[8]  Rita Gitik,et al.  WIDTHS OF SUBGROUPS , 1998 .

[9]  A. Valette,et al.  Groups with the Haagerup Property: Gromov’s a-T-menability , 2001 .

[10]  Michah Sageev,et al.  Codimension-1 Subgroups and Splittings of Groups , 1997 .

[11]  Coarse Alexander duality and duality groups , 1999, math/9911003.

[12]  Martin Roller Poc Sets, Median Algebras and Group Actions , 2016 .

[13]  R. Howlett,et al.  A finiteness property an an automatic structure for Coxeter groups , 1993 .

[14]  N. Wright Finite asymptotic dimension for CAT(0) cube complexes , 2010, 1004.4172.

[15]  D. Wise,et al.  Cubulating graphs of free groups with cyclic edge groups , 2010 .

[16]  A. O. Houcine On hyperbolic groups , 2006 .

[17]  Y. Ollivier,et al.  Cubulating random groups at density less than 1/6 , 2011 .

[18]  Coarse decompositions of boundaries for CAT(0) groups , 2006, math/0611006.

[19]  Sebastian Ehrlichmann,et al.  Metric Spaces Of Non Positive Curvature , 2016 .

[20]  A. Nevo,et al.  The Poisson boundary of CAT(0) cube complex groups , 2011, 1105.1675.

[21]  Groups acting on CAT(0) cube complexes , 1997, math/9702231.

[22]  Graham A. Niblo,et al.  Groups acting on cubes and Kazhdan’s property (T) , 1998 .

[23]  Cubulating malnormal amalgams , 2015 .

[24]  D. Wise Subgroup separability of the figure 8 knot group , 2006 .

[25]  M. Sageev,et al.  Rank Rigidity for Cat(0) Cube Complexes , 2010, 1005.5687.

[26]  D. Wise,et al.  A boundary criterion for cubulation , 2009, 0908.3609.

[27]  H. Rubinstein,et al.  INTERSECTION PATTERNS OF ESSENTIAL SURFACES IN 3-MANIFOLDS , 1999 .

[28]  Cubulating rhombus groups , 2013 .

[29]  P. Scott,et al.  Ends of pairs of groups , 1977 .

[30]  Frederic Paulin,et al.  Simplicite de groupes d'automorphismes d'espaces a courbure negative , 1998, math/9812167.

[31]  D. Wise,et al.  The Tits Alternative for Cat(0) Cubical Complexes , 2004, math/0405022.

[32]  Mark F. Hagen,et al.  Weak hyperbolicity of cube complexes and quasi‐arboreal groups , 2011, 1101.5191.

[33]  D. Wise,et al.  Mixed 3-manifolds are virtually special , 2012, 1205.6742.

[34]  Daniel T. Wise,et al.  RESEARCH ANNOUNCEMENT: THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY , 2009 .

[35]  D. Wise Recubulating free groups , 2012 .

[36]  D. V. Osin Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems , 2004 .

[37]  Diagram groups and directed 2-complexes: Homotopy and homology , 2003, math/0301225.

[38]  Shicheng Wang,et al.  $\pi_1$-injective surfaces in graph manifolds , 1998 .

[39]  Peter Scott There are no fake Seifert Fibre Spaces with Infinite π 1 , 1983 .

[40]  Daniel T. Wise,et al.  Packing subgroups in relatively hyperbolic groups , 2009 .

[41]  I. Leary A metric Kan–Thurston theorem , 2010, 1009.1540.

[42]  Local finiteness for cubulations of CAT(0) groups , 2006, math/0610950.

[43]  B. H. Bowditch,et al.  Relatively hyperbolic Groups , 2012, Int. J. Algebra Comput..

[44]  Daniel T. Wise,et al.  Coxeter groups are virtually special , 2010 .

[45]  Graham A. Niblo,et al.  The geometry of cube complexes and the complexity of their fundamental groups , 1998 .

[46]  G. Christopher Hruska,et al.  Relative hyperbolicity and relative quasiconvexity for countable groups , 2008, 0801.4596.

[47]  Daniel S. Farley Finiteness and CAT(0) properties of diagram groups , 2003 .

[48]  Daniel T. Wise,et al.  Cubulating small cancellation groups , 2004 .

[49]  Daniel T. Wise,et al.  Special Cube Complexes , 2008, The Structure of Groups with a Quasiconvex Hierarchy.

[50]  Bogdan Nica Cubulating spaces with walls , 2004 .

[51]  J. H. Rubinstein,et al.  Geometry of Low-dimensional Manifolds: An introduction to polyhedral metrics of non-positive curvature on 3-manifolds , 1991 .

[52]  Gabor Moussong,et al.  Hyperbolic Coxeter groups , 1988 .

[53]  Ross Geoghegan,et al.  Topological methods in group theory , 2007 .

[54]  D. Wise,et al.  Cubulating one-relator groups with torsion , 2013, Mathematical Proceedings of the Cambridge Philosophical Society.

[55]  Graham Niblo,et al.  From Wall Spaces to Cat(0) Cube Complexes , 2005, Int. J. Algebra Comput..

[56]  Combination of convergence groups , 2002, math/0203258.

[57]  S. Barr'e,et al.  Random groups and nonarchimedean lattices , 2013, Forum of Mathematics, Sigma.

[58]  Removing chambers in Bruhat-Tits buildings , 2010, 1003.4614.

[59]  A non-trivial example of a free-by-free group with the Haagerup property , 2010, 1008.3766.

[60]  M. Roller,et al.  Relative ends and duality groups , 1989 .