The mechanobiology of brain function

All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.

[1]  M. Komada,et al.  βIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier , 2002, The Journal of cell biology.

[2]  P. Wong,et al.  Involvement of neurofilaments in the radial growth of axons , 1991, Journal of Cell Science.

[3]  Daniel Koch,et al.  Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. , 2012, Biophysical journal.

[4]  A. Patel,et al.  Mechano- or Acid Stimulation, Two Interactive Modes of Activation of the TREK-1 Potassium Channel* , 1999, The Journal of Biological Chemistry.

[5]  Marileen Dogterom,et al.  Direct measurement of force generation by actin filament polymerization using an optical trap , 2007, Proceedings of the National Academy of Sciences.

[6]  Frederick Sachs,et al.  Mechanosensitivity of Nav1.5, a voltage‐sensitive sodium channel , 2010, The Journal of physiology.

[7]  Frederick Sachs,et al.  Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins , 2011, Cellular and molecular bioengineering.

[8]  Orsolya Farkas,et al.  Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. , 2007, Progress in brain research.

[9]  C S Peskin,et al.  Cellular motions and thermal fluctuations: the Brownian ratchet. , 1993, Biophysical journal.

[10]  B. Salzberg,et al.  A mechanical spike accompanies the action potential in Mammalian nerve terminals. , 2007, Biophysical journal.

[11]  W. Seifriz An Elastic Value of Protoplasm, with Further Observations on the Viscosity of Protoplasm , 1924 .

[12]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[13]  Chao-Min Cheng,et al.  Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology , 2010, Nature Protocols.

[14]  Thomas Stockner,et al.  Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine. , 2010, Journal of the American Chemical Society.

[15]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[16]  T. L. Hill,et al.  Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Devaux The C‐terminal domain of βIV‐spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier , 2010, The Journal of physiology.

[18]  M. Sheetz,et al.  Biophysics of substrate interaction: Influence on neural motility, differentiation, and repair , 2011, Developmental neurobiology.

[19]  C. Cotman,et al.  A microfluidic culture platform for CNS axonal injury, regeneration and transport , 2005, Nature Methods.

[20]  M. Lazdunski,et al.  TRAAK Is a Mammalian Neuronal Mechano-gated K+Channel* , 1999, The Journal of Biological Chemistry.

[21]  Klaus Schulten,et al.  Mechanical force generation by G proteins , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kristian Franze,et al.  Growth cones as soft and weak force generators , 2011, Proceedings of the National Academy of Sciences.

[23]  A. Grinnell,et al.  Integrins and modulation of transmitter release from motor nerve terminals by stretch. , 1995, Science.

[24]  Diane Dalecki,et al.  Mechanical bioeffects of ultrasound. , 2004, Annual review of biomedical engineering.

[25]  Dagmar Krefting,et al.  The Influence of Physiological Aging and Atrophy on Brain Viscoelastic Properties in Humans , 2011, PloS one.

[26]  K Kusano,et al.  Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. , 1989, Biophysical journal.

[27]  M. Chalfie,et al.  Eukaryotic mechanosensitive channels. , 2010, Annual review of biophysics.

[28]  G. Grant,et al.  Mild traumatic brain injury in U.S. soldiers returning from Iraq. , 2008, The New England journal of medicine.

[29]  B. Yurke,et al.  Measurement of the force-velocity relation for growing microtubules. , 1997, Science.

[30]  Dierk Thomas,et al.  Alternative Translation Initiation in Rat Brain Yields K2P2.1 Potassium Channels Permeable to Sodium , 2008, Neuron.

[31]  Julie A. Theriot,et al.  Loading history determines the velocity of actin-network growth , 2005, Nature Cell Biology.

[32]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[33]  R. Ehman,et al.  Magnetic resonance elastography: A review , 2010, Clinical anatomy.

[34]  P. Janmey,et al.  Mechanical Effects of Neurofilament Cross-bridges , 1996, The Journal of Biological Chemistry.

[35]  T. Woo,et al.  Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. , 2010, Archives of general psychiatry.

[36]  D. Muller,et al.  N-cadherin mediates plasticity-induced long-term spine stabilization , 2010, The Journal of cell biology.

[37]  E. Lo,et al.  Extracellular proteolysis in brain injury and inflammation: Role for plasminogen activators and matrix metalloproteinases , 2002, Journal of neuroscience research.

[38]  C. Ukomadu,et al.  Voltage‐Sensitive Sodium Channelsg , 1991 .

[39]  D. K. Hill,et al.  The volume change resulting from stimulation of a giant nerve fibre , 1950, The Journal of physiology.

[40]  Michael D. Buschmann,et al.  Mechanical properties of mammalian cells in suspension measured by electro-deformation , 2010 .

[41]  K. Magleby,et al.  Linker-Gating Ring Complex as Passive Spring and Ca2+-Dependent Machine for a Voltage- and Ca2+-Activated Potassium Channel , 2005, Neuron.

[42]  Peter Sonderegger,et al.  The dual role of the extracellular matrix in synaptic plasticity and homeostasis , 2010, Nature Reviews Neuroscience.

[43]  G. Westbrook,et al.  Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse , 2001, Nature.

[44]  Thomas Boudou,et al.  A hitchhiker's guide to mechanobiology. , 2011, Developmental cell.

[45]  David F Meaney,et al.  Biomechanics of concussion. , 2011, Clinics in sports medicine.

[46]  Rob Phillips,et al.  Membrane mechanics as a probe of ion-channel gating mechanisms. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Pere Roca-Cusachs,et al.  Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. , 2010, Developmental cell.

[48]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[49]  Jyothi Arikkath,et al.  Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity , 2008, Trends in Neurosciences.

[50]  C. Morris,et al.  Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions. , 2002, Biophysical journal.

[51]  R. MacKinnon,et al.  Crystal Structure of the Human K2P TRAAK, a Lipid- and Mechano-Sensitive K+ Ion Channel , 2012, Science.

[52]  David J. Odde,et al.  Erratum: Tensile force-dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads (Biophysical Journal (2003) 85 (623-636)) , 2004 .

[53]  J. Povlishock,et al.  Mechanoporation Induced by Diffuse Traumatic Brain Injury: An Irreversible or Reversible Response to Injury? , 2006, The Journal of Neuroscience.

[54]  R. Adelstein,et al.  Myosin IIB Is Required for Growth Cone Motility , 2001, The Journal of Neuroscience.

[55]  Clifford R. Jack,et al.  Magnetic resonance elastography of the brain , 2008, NeuroImage.

[56]  O. Hamill,et al.  Molecular basis of mechanotransduction in living cells. , 2001, Physiological reviews.

[57]  Tapan P. Patel,et al.  N-Methyl-d-aspartate Receptor Mechanosensitivity Is Governed by C Terminus of NR2B Subunit* , 2011, The Journal of Biological Chemistry.

[58]  J. Felmlee,et al.  Mechanical transient‐based magnetic resonance elastography , 2005, Magnetic resonance in medicine.

[59]  Barclay Morrison,et al.  Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. , 2007, Journal of neurotrauma.

[60]  Erin M. Schuman,et al.  Microfluidic Local Perfusion Chambers for the Visualization and Manipulation of Synapses , 2010, Neuron.

[61]  R. Yasuda,et al.  The mechanisms underlying the spatial spreading of signaling activity , 2011, Current Opinion in Neurobiology.

[62]  T. Fellin,et al.  Extracellular matrix in plasticity and epileptogenesis. , 2008, Neuron glia biology.

[63]  G. Schultz,et al.  Molecular and Functional Characterization of the Melastatin-related Cation Channel TRPM3* , 2003, Journal of Biological Chemistry.

[64]  S. Othman,et al.  Microscopic magnetic resonance elastography of traumatic brain injury model , 2011, Journal of Neuroscience Methods.

[65]  W. Vaz,et al.  Chapter 6 - Lateral Diffusion in Membranes , 1995 .

[66]  A. Levchenko,et al.  Microengineered platforms for cell mechanobiology. , 2009, Annual review of biomedical engineering.

[67]  O. Hamill,et al.  Pressure-clamp technique for measurement of the relaxation kinetics of mechanosensitive channels , 1993, Trends in Neurosciences.

[68]  C. Morris,et al.  Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. , 2007, Biophysical journal.

[69]  R. Cantor,et al.  The lateral pressure profile in membranes: a physical mechanism of general anesthesia. , 1998, Biochemistry.

[70]  H. Chan,et al.  Mechanosensitive gating of CFTR , 2010, Nature Cell Biology.

[71]  Jean-Jacques Meister,et al.  Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis , 2000, European Biophysics Journal.

[72]  Y. Grossman,et al.  Pressure‐induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N‐type Ca2+ channels , 2000, The European journal of neuroscience.

[73]  C. Morris,et al.  Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. , 2007, Biophysical journal.

[74]  M. Schliwa,et al.  Molecular motors , 2003, Nature.

[75]  Jianping Fu,et al.  Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity , 2011, Nature Protocols.

[76]  R. Pastor,et al.  Time Scales of Lipid Dynamics and Molecular Dynamics , 1996 .

[77]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[78]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[79]  Rama R. Gullapalli,et al.  Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology. , 2007, Journal of biomedical optics.

[80]  M. Kirschner,et al.  Microtubule bending and breaking in living fibroblast cells. , 1999, Journal of cell science.

[81]  G. E. Crawford,et al.  Viscoelastic relaxation of bilayer lipid membranes: II. Temperature dependence of relaxation time. , 1989, Biophysical journal.

[82]  S. J. Smith,et al.  Neuronal cytomechanics: the actin-based motility of growth cones. , 1988, Science.

[83]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[84]  Christian Franck,et al.  A Possible Role for Integrin Signaling in Diffuse Axonal Injury , 2011, PloS one.

[85]  J. Rothstein,et al.  β-III Spectrin Is Critical for Development of Purkinje Cell Dendritic Tree and Spine Morphogenesis , 2011, The Journal of Neuroscience.

[86]  A. Kleinzeller,et al.  Current Topics in Membranes and Transport , 1970 .

[87]  A. Freedman Handbook of Experimental Pharmacology, vol 14. , 1972 .

[88]  E. Lane,et al.  Intermediate filaments and stress. , 2007, Experimental cell research.

[89]  D. Cleveland,et al.  Neuronal intermediate filaments. , 1996, Annual review of neuroscience.

[90]  Manfred Schliwa,et al.  Molecular motors , 2003, Nature.

[91]  E. Sackmann,et al.  Viscoelastic properties of erythrocyte membranes in high-frequency electric fields , 1984, Nature.

[92]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[93]  C. Hoogenraad,et al.  Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity , 2009, Neuron.

[94]  Ning Wang,et al.  FRET and mechanobiology. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[95]  E. Egelman,et al.  Actin Filaments as Tension Sensors , 2012, Current Biology.

[96]  J. Ghajar Traumatic brain injury , 2000, The Lancet.

[97]  J. Hoh,et al.  Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. , 1997, Biochemistry.

[98]  W. Baumgartner,et al.  Ca2+ Dependency of N-Cadherin Function Probed by Laser Tweezer and Atomic Force Microscopy , 2003, The Journal of Neuroscience.

[99]  E. Dent,et al.  Activity-Dependent Dynamic Microtubule Invasion of Dendritic Spines , 2008, The Journal of Neuroscience.

[100]  K. Weber,et al.  Self-assembly in Vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments. , 1981, Journal of molecular biology.

[101]  J A Theriot,et al.  The Polymerization Motor , 2000, Traffic.

[102]  D. Bray,et al.  Axonal growth in response to experimentally applied mechanical tension. , 1984, Developmental biology.

[103]  C. Jack,et al.  Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography , 2011, Journal of magnetic resonance imaging : JMRI.

[104]  P. Ascher,et al.  Mechanosensitivity of NMDA receptors in cultured mouse central neurons , 1994, Neuron.

[105]  Frauke Zipp,et al.  MR-elastography reveals degradation of tissue integrity in multiple sclerosis , 2010, NeuroImage.

[106]  David J Odde,et al.  Traction Dynamics of Filopodia on Compliant Substrates , 2008, Science.

[107]  A. Gefen,et al.  Age-dependent changes in material properties of the brain and braincase of the rat. , 2003, Journal of neurotrauma.

[108]  Sergei Sukharev,et al.  Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms , 2004, Science's STKE.

[109]  A. Kurosky,et al.  TRPC1 forms the stretch-activated cation channel in vertebrate cells , 2005, Nature Cell Biology.

[110]  Ricardo J. Komotar,et al.  Extreme Stretch Growth of Integrated Axons , 2004 .

[111]  G. E. Crawford,et al.  Viscoelastic relaxation of bilayer lipid membranes. Frequency-dependent tension and membrane viscosity. , 1987, Biophysical journal.

[112]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[113]  R. Buxbaum,et al.  Tensile regulation of axonal elongation and initiation , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  Sanjay Kumar,et al.  Role of long‐range repulsive forces in organizing axonal neurofilament distributions: Evidence from mice deficient in myelin‐associated glycoprotein , 2002, Journal of neuroscience research.

[115]  Daniela Berg,et al.  Hyperechogenicity of the substantia nigra: pitfalls in assessment and specificity for Parkinson’s disease , 2011, Journal of Neural Transmission.

[116]  J. Wolf,et al.  Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels , 2001, The Journal of Neuroscience.

[117]  S. Thompson,et al.  The Actin Binding Domain of βI-Spectrin Regulates the Morphological and Functional Dynamics of Dendritic Spines , 2011, PloS one.

[118]  T. L. Hill,et al.  Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. , 1982, International review of cytology.

[119]  M. Sheetz,et al.  RPTPα is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons , 2007, Journal of Cell Science.

[120]  K. Beach,et al.  Functional tissue pulsatility imaging of the brain during visual stimulation. , 2007, Ultrasound in medicine & biology.

[121]  S. Okabe,et al.  Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3–CA1 synapses in hippocampal slice cultures , 2005, Molecular and Cellular Neuroscience.

[122]  Kevin D Costa,et al.  Atomic force microscopy in mechanobiology: measuring microelastic heterogeneity of living cells. , 2011, Methods in molecular biology.

[123]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[124]  RJ Balice-Gordon,et al.  In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  H. Kueh,et al.  Structural Plasticity in Actin and Tubulin Polymer Dynamics , 2009, Science.

[126]  K. Barbee,et al.  Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage , 2008, Experimental Neurology.

[127]  Lisa A Flanagan,et al.  Neurite branching on deformable substrates , 2002, Neuroreport.

[128]  R. Waugh,et al.  Electric fields induce reversible changes in the surface to volume ratio of micropipette-aspirated erythrocytes. , 1990, Biophysical journal.

[129]  C. Morris,et al.  Mechanosensitivity of N-type calcium channel currents. , 2002, Biophysical journal.

[130]  Donald E. Ingber,et al.  Jcb: Article Introduction , 2002 .

[131]  Yusuf Tufail,et al.  Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound , 2011, Nature Protocols.

[132]  Jagannathan Rajagopalan,et al.  MEMS sensors and microsystems for cell mechanobiology , 2011, Journal of micromechanics and microengineering : structures, devices, and systems.

[133]  Catherine E. Morris,et al.  Voltage-Gated Channel Mechanosensitivity: Fact or Friction? , 2011, Front. Physio..

[134]  J. Y. Sim,et al.  Integrated strain array for cellular mechanobiology studies , 2011, Journal of micromechanics and microengineering : structures, devices, and systems.

[135]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[136]  Akira Chiba,et al.  Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals , 2009, Proceedings of the National Academy of Sciences.

[137]  R. Sinkus,et al.  Viscoelastic properties of human cerebellum using magnetic resonance elastography. , 2011, Journal of biomechanics.

[138]  Rajendrani Mukhopadhyay,et al.  Molecular mechanisms for organizing the neuronal cytoskeleton. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.