SCOPE: a coronagraph for operational space weather prediction: phase A/B1 design and breadboarding

Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), is becoming more important given our ever-increasing reliance on technology. SCOPE is a coronagraph specifically optimised for operational space weather prediction, designed to provide early evidence of Earth-bound CMEs. In this paper, we present results from phase A/B1 of the instrument’s development, which included conceptual design and a program of breadboard testing. We describe the conceptual design of the instrument. In particular, we explain the design and analysis of the straylight rejection baffles and occulter needed to block the image of the solar disc, in order to render the much fainter corona visible. We discuss the development of in-house analysis code to predict the straylight diffraction effects that limit the instrument’s performance, and present results, which we compare against commercially available analysis tools and the results from breadboard testing. In particular, we discuss some of the challenges of predicting straylight effects in this type of instrument and the methods we have developed for overcoming them. We present the test results from an optical breadboard, designed to verify the end-to-end straylight rejection of the instrument. The design and development of both the breadboard and the test facility is presented. We discuss some of the challenges of measuring very low levels of straylight and how these drive the breadboard and test facility design. We discuss the test and analysis procedures developed to ensure a representative, complete characterisation of the instrument’s straylight response.

[1]  John E. Krist,et al.  PROPER: an optical propagation library for IDL , 2007, SPIE Optical Engineering + Applications.