AEROTHERMODYNAMICS OF THE STARDUST SAMPLE RETURN CAPSULE

The development of a new high-Ž delity methodology for predicting entry  ows with coupled radiation and ablation is described. The prediction methodology consists of an axisymmetric, nonequilibrium, Navier–Stokes  ow solver loosely coupled to a radiation prediction code and a material thermal response code. The methodology is used to simulate the 12.6-km/s Earth atmospheric entry of the Stardust sample return capsule using ablating and nonablating boundary conditions. These  ow simulations are used to size and design the Stardust forebody and afterbody heatshields and develop arcjet test conditions and models. The  ow simulations indicate that the afterbody heating and pressure proŽ les in time are signiŽ cantly different than the forebody heating and pressure proŽ les. This result is explained in terms of the pertinent aerothermodynamicsof the  owŽ eld and the vehicle’s geometry.When applied to the afterbody thermal protection system, these results show that the traditional afterbody heatshield design approach is nonconservative for the Stardust sample return capsule shape and entry conditions.

[1]  Daniel J. Rasky,et al.  Fully Implicit Ablation and Thermal Response Program for Spacecraft Heatshield Analysis , 1998 .

[2]  J. Kawaguchi,et al.  Sample and return mission from asteroid Nereus via solar electric propulsion , 1996 .

[3]  Dave Olynick Aerothermodynamics of the Stardust sample return capsule , 1998 .

[4]  Vladimir V. Riabov,et al.  Approximate calculation of transport coefficients of Earth and Mars atmospheric dissociating gases , 1995 .

[5]  H. Tran,et al.  Phenolic Impregnated Carbon Ablators (PICA) for Discovery class missions , 1996 .

[6]  Graham V. Candler,et al.  Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium , 1991 .

[7]  Prasun N. Desai,et al.  Entry dispersion analysis for the Stardust comet sample return capsule , 1997 .

[8]  Dean Kontinos,et al.  Coupled Thermal Analysis Method with Application to Metallic Thermal Protection Panels , 1997 .

[9]  J. J. Bertin,et al.  Heat-transfer rate and pressure measurements obtained during Apollo orbital entries , 1970 .

[10]  William M. Congdon,et al.  Mars Pathfinder entry temperature data, aerothermal heating, and heatshield material response , 1998 .

[11]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[12]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[13]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[14]  Christine E. Johnson,et al.  Qualification of the forebody heatshield of the Stardust's Sample Return Capsule , 1997 .

[15]  J. Wilson Ionization Rate of Air behind High‐Speed Shock Waves , 1966 .

[16]  Yih-Kanq Chen,et al.  Forebody TPS sizing with radiation and ablation for the Stardust Sample Return Capsule , 1997 .

[17]  M. E. Tauber,et al.  Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .

[18]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[19]  F. Milos,et al.  Comprehensive model for multicomponent ablation thermochemistry , 1997 .

[20]  J. Heicklen Gas-phase chemistry of re-entry. , 1967 .

[21]  W. Willcockson Stardust Sample Return Capsule Design Experience , 1998 .

[22]  B. Hollis,et al.  Hypervelocity heat-transfer measurements in an expansion tube , 1996 .

[23]  Christine E. Johnson,et al.  STARDUST BACKSHELL AND BACK INTERFACE PLATE DESIGN VERIFICATION TESTS IN THE NASA AMES ARC JET FACILITIES , 1997 .

[24]  B. Bhutta,et al.  A new technique for the computation of severe reentry environments , 1996 .

[25]  Peter A. Gnoffo,et al.  Computational aerothermodynamic design issues for hypersonic vehicles , 1997 .

[26]  Richard G. Wilmoth,et al.  Aerodynamics of Stardust Sample Return Capsule , 1997 .

[27]  R. A. Mitcheltree,et al.  Wake Flow About the Mars Pathfinder Entry Vehicle , 1995 .

[28]  C. Lewis,et al.  A new technique for low-to-high altitude predictions of ablative hypersonic flowfields , 1991 .

[29]  B. Hollis,et al.  Comparison of Experimental and Computational Aerothermodynamics of a 70-deg Sphere-Cone , 1996 .

[30]  Graham V. Candler,et al.  Comparison of coupled radiative flow solutions with Project Fire II flight data , 1995 .

[31]  Kam-Pui Lee,et al.  Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry , 1990 .

[32]  Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle , 1994 .