Optimization over the efficient set of a parametric multiple objective linear programming problem

Abstract In this paper we consider the problem ( P ) for optimizing a function over the efficient set of a multiple objective linear programming (MOLP) problem with parameters in the right hand side vector. Three solution algorithms in a most general case of problem ( P ) and improvements of them in some special cases are presented. In the case when the objective function of problem ( P ) is linear, it can be solved based on | T 2 | linear programming problems with mixed one-zero integer variables if the parametric set is finite and based on | T 2 | linear programming problems if the right hand side vector of the MOLP problem is a linear function of the parameters and the parametric set is a polyhedron, where | T 2 | is, in general, the number of maximal efficient faces of the MOLP problem corresponding to a value of the parameters. A numerical example is given to illustrate the working of the algorithms.

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  Harold P. Benson,et al.  Finding an Initial Efficient Extreme Point for a Linear Multiple Objective Program , 1981 .

[3]  Miroslav Manas,et al.  Finding all vertices of a convex polyhedron , 1968 .

[4]  M. Dessouky,et al.  Estimates of the minimum nondominated criterion values in multiple-criteria decision-making , 1986 .

[5]  T. Gal A general method for determining the set of all efficient solutions to a linear vectormaximum problem , 1977 .

[6]  Jerald P. Dauer,et al.  Optimization over the efficient set using an active constraint approach , 1991, ZOR Methods Model. Oper. Res..

[7]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[8]  Johan Philip,et al.  Algorithms for the vector maximization problem , 1972, Math. Program..

[9]  János Fülöp,et al.  A cutting plane algorithm for linear optimization over the efficient set , 1994 .

[10]  H. P. Benson,et al.  Optimization over the efficient set: Four special cases , 1994 .

[11]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[12]  H. P. Benson,et al.  A face search heuristic algorithm for optimizing over the efficient set , 1993 .

[13]  H. P. Benson,et al.  Optimization over the efficient set , 1984 .

[14]  Ralph E. Steuer,et al.  Computational experience concerning payoff tables and minimum criterion values over the efficient set , 1988 .

[15]  Ralph E. Steuer,et al.  A revised simplex method for linear multiple objective programs , 1973, Math. Program..

[16]  J. G. Ecker,et al.  On Computing an Initial Efficient Extreme Point , 1978 .

[17]  D. White The maximization of a function over the efficient set via a penalty function approach , 1996 .

[18]  Harold P. Benson,et al.  An all-linear programming relaxation algorithm for optimizing over the efficient set , 1991, J. Glob. Optim..

[19]  T. H. Matheiss,et al.  A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets , 1980, Math. Oper. Res..

[20]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[21]  Reiner Horst,et al.  Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making , 1997, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[22]  J. Ecker,et al.  Generating all maximal efficient faces for multiple objective linear programs , 1980 .

[23]  Heinz Isermann,et al.  The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program , 1977 .

[24]  T. V. Tu On generalized linear multiple objective programming , 1996 .

[25]  H. Weistroffer Careful usage of pessimistic values is needed in multiple objectives optimization , 1985 .

[26]  H. P. Benson,et al.  A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set , 1992 .

[27]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[28]  S. Bolintineanu,et al.  Minimization of a quasi-concave function over an efficient set , 1993, Math. Program..

[29]  Harold P. Benson,et al.  Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem , 1996 .

[30]  Jerald P. Dauer,et al.  Optimization over the efficient set , 1995, J. Glob. Optim..

[31]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[32]  G. R. Reeves,et al.  Minimum values over the efficient set in multiple objective decision making , 1988 .

[33]  Joseph G. Ecker,et al.  Finding efficient points for linear multiple objective programs , 1975, Math. Program..

[34]  Joseph G. Ecker,et al.  Finding all efficient extreme points for multiple objective linear programs , 1978, Math. Program..

[35]  H. P. Benson,et al.  An algorithm for optimizing over the weakly-efficient set , 1986 .

[36]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.