Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos.

[1]  C. R. Esteban,et al.  Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo , 2021, Cell.

[2]  Haixi Sun,et al.  Author Correction: Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans , 2021, Cell discovery.

[3]  M. Mossahebi-Mohammadi,et al.  FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency , 2020, Frontiers in Cell and Developmental Biology.

[4]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[5]  J. Nichols,et al.  Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development , 2018, Development.

[6]  W. Enard,et al.  Derivation of induced pluripotent stem cells in Japanese macaque (Macaca fuscata) , 2018, Scientific Reports.

[7]  Correction: Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast (doi: 10.1242/dev.158501) , 2018, Development.

[8]  Liu Wang,et al.  Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis , 2017, Cell Research.

[9]  H. Nakauchi,et al.  Lessons from Interspecies Mammalian Chimeras. , 2017, Annual review of cell and developmental biology.

[10]  P. Tam,et al.  Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. , 2017, Stem cell research.

[11]  J. C. Belmonte,et al.  Interspecies Chimerism with Mammalian Pluripotent Stem Cells , 2017, Cell.

[12]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[13]  R. Jaenisch,et al.  Stem cells and interspecies chimaeras , 2016, Nature.

[14]  I. Weissman,et al.  Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos. , 2016, Cell stem cell.

[15]  Dahai Liu,et al.  Stem Cell Reports , 2022 .

[16]  Juan Carlos Izpisua Belmonte,et al.  An alternative pluripotent state confers interspecies chimaeric competency , 2015, Nature.

[17]  B. Lim,et al.  Stem cells: Equilibrium established , 2015, Nature.

[18]  G. Hermerén Ethical considerations in chimera research , 2015, Development.

[19]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[20]  Graziano Martello,et al.  The nature of embryonic stem cells. , 2014, Annual review of cell and developmental biology.

[21]  R. Young,et al.  Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency , 2014, Cell stem cell.

[22]  Xiang Li,et al.  Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. , 2014, Cell stem cell.

[23]  J. Nichols,et al.  Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human , 2014, Cell.

[24]  Yoav Gilad,et al.  A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics , 2014, bioRxiv.

[25]  S. Emmott,et al.  Defining an essential transcription factor program for naïve pluripotency , 2014, Science.

[26]  Jianming Jiang,et al.  Klf2 is an essential factor that sustains ground state pluripotency. , 2014, Cell stem cell.

[27]  I. Amit,et al.  Derivation of novel human ground state naive pluripotent stem cells , 2013, Nature.

[28]  K. Eggan,et al.  Derivation of induced pluripotent stem cells from the baboon: a nonhuman primate model for preclinical testing of stem cell therapies. , 2013, Cellular reprogramming.

[29]  Paul Bertone,et al.  Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor , 2013, The EMBO journal.

[30]  Qi-Long Ying,et al.  Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state , 2013, Journal of Cell Science.

[31]  Sean P. Palecek,et al.  Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions , 2012, Nature Protocols.

[32]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[33]  Anagha Joshi,et al.  Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal , 2012, Cell stem cell.

[34]  T. Blauwkamp,et al.  Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors , 2012, Nature Communications.

[35]  Sean P. Palecek,et al.  Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling , 2012, Proceedings of the National Academy of Sciences.

[36]  S. Mitalipov,et al.  Generation of Chimeric Rhesus Monkeys , 2012, Cell.

[37]  A. Dietz,et al.  Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells , 2011, Stem Cell Research & Therapy.

[38]  S. Sokol Maintaining embryonic stem cell pluripotency with Wnt signaling , 2011, Development.

[39]  Naoki Nishishita,et al.  Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors , 2011, Proceedings of the National Academy of Sciences.

[40]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[41]  C. Vandevoort,et al.  Primate preimplantation embryo is a target for relaxin during early pregnancy. , 2011, Fertility and sterility.

[42]  Jennifer M. Bolin,et al.  Chemically defined conditions for human iPS cell derivation and culture , 2011, Nature Methods.

[43]  I. Weissman,et al.  Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors , 2011, Proceedings of the National Academy of Sciences.

[44]  H. Kiem,et al.  Efficient generation of nonhuman primate induced pluripotent stem cells. , 2011, Stem cells and development.

[45]  Austin G Smith,et al.  Stat3 Activation Is Limiting for Reprogramming to Ground State Pluripotency , 2010, Cell stem cell.

[46]  S. Tardif,et al.  Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. , 2010, Stem cell research.

[47]  J. Nichols,et al.  Oct4 and LIF/Stat3 additively induce Krüppel factors to sustain embryonic stem cell self-renewal. , 2009, Cell stem cell.

[48]  C. Vandevoort,et al.  Differential Effects of Follistatin on Nonhuman Primate Oocyte Maturation and Pre-Implantation Embryo Development In Vitro1 , 2009, Biology of reproduction.

[49]  Marc W. Kirschner,et al.  Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling , 2009, Nature.

[50]  M. Hasegawa,et al.  Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[51]  Hitoshi Niwa,et al.  A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells , 2009, Nature.

[52]  H. Aburatani,et al.  Sall4 Is Essential for Stabilization, But Not for Pluripotency, of Embryonic Stem Cells by Repressing Aberrant Trophectoderm Gene Expression , 2009, Stem cells.

[53]  C. Vandevoort,et al.  Growth hormone and in vitro maturation of rhesus macaque oocytes and subsequent embryo development , 2008, Journal of Assisted Reproduction and Genetics.

[54]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[55]  Sean C. Bendall,et al.  IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro , 2007, Nature.

[56]  R. McKay,et al.  New cell lines from mouse epiblast share defining features with human embryonic stem cells , 2007, Nature.

[57]  M. Trotter,et al.  Derivation of pluripotent epiblast stem cells from mammalian embryos , 2007, Nature.

[58]  David N. Messina,et al.  Evolutionary and Biomedical Insights from the Rhesus Macaque Genome , 2007, Science.

[59]  Patrick J. Paddison,et al.  Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells , 2006, Proceedings of the National Academy of Sciences.

[60]  S. Mitalipov,et al.  Isolation and Characterization of Novel Rhesus Monkey Embryonic Stem Cell Lines , 2006, Stem cells.

[61]  R. Pedersen,et al.  Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells , 2005, Journal of Cell Science.

[62]  I. Weissman,et al.  Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Asger Hobolth,et al.  Comparative analysis of protein coding sequences from human, mouse and the domesticated pig , 2005, BMC Biology.

[64]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[65]  C. Vandevoort,et al.  Causes of developmental failure of in-vitro matured rhesus monkey oocytes: impairments in embryonic genome activation. , 2003, Human reproduction.

[66]  C. Vandevoort,et al.  Recombinant human gonadotropins for macaque superovulation: Repeated stimulations and post‐treatment pregnancies , 2001, Journal of medical primatology.

[67]  G. Glazko,et al.  Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  C. Vandevoort,et al.  The macaque model for in vitro fertilization: superovulation techniques and ultrasound-guided follicular aspiration. , 1991, Journal of medical primatology.

[69]  D. Shafer,et al.  A comparison of the karyotypes of six species of the genus Macaca and a species of the genus Cercocebus. , 1986, Folia primatologica; international journal of primatology.

[70]  J. D. Neill,et al.  Seasonal variation in reproductive hormones of rhesus monkeys: anovulatory and short luteal phase menstrual cycles. , 1981, Biology of reproduction.

[71]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[72]  R. K. Meyer,et al.  The effect of season on occurrence of ovulation in the rhesus monkey. , 1971, Biology of reproduction.

[73]  K. Benirschke,et al.  An Atlas of Mammalian Chromosomes , 1970, Springer New York.