Propagation of regularity of level sets for a class of active transport equations
暂无分享,去创建一个
[1] Andrew J. Majda,et al. Vorticity and the mathematical theory of incompressible fluid flow , 1986 .
[2] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[3] F. Fanelli. Conservation of Geometric Structures for Non-Homogeneous Inviscid Incompressible Fluids , 2012, 1305.1128.
[4] J. Kelliher. Expanding Domain Limit for Incompressible Fluids in the Plane , 2008 .
[5] P. Gamblin,et al. On three-dimensional vortex patches , 1995 .
[6] T. Broadbent. Measure and Integral , 1957, Nature.
[7] Jean-Yves Chemin,et al. Perfect Incompressible Fluids , 1998 .
[8] Bevan K. Youse,et al. Introduction to real analysis , 1972 .
[9] Joan Verdera,et al. The Regularity of the Boundary of a Multidimensional Aggregation Patch , 2015, SIAM J. Math. Anal..
[10] G. Gie,et al. The aggregation equation with Newtonian potential: The vanishing viscosity limit , 2017 .
[11] Robert L. Foote,et al. Regularity of the distance function , 1984 .
[12] Laurent Desvillettes,et al. On two-dimensional Hamiltonian transport equations with continuous coefficients , 2001, Differential and Integral Equations.
[13] Andrea L. Bertozzi,et al. Global regularity for vortex patches , 1993 .
[14] P. Serfati. UNE PREUVE DIRECTE D'EXISTENCE GLOBALE DES VORTEX PATCHES 2D , 1994 .
[15] A. Majda,et al. Vorticity and incompressible flow , 2001 .
[16] Andrea L. Bertozzi,et al. AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .
[17] J. Chemin,et al. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels , 1993 .
[18] Hantaek Bae,et al. Striated Regularity for the Euler Equations , 2015, 1508.01915.
[19] P. Serfati. Etude mathématique de flammes infiniment minces en combustion. Résultats de structure et de régularité pour l'équation d'Euler incompressible , 1992 .