Propagation of regularity of level sets for a class of active transport equations

Abstract We prove that for any α ∈ ( 0 , 1 ) , the C 1 , α regularity of level sets for solutions to a class of active transport equations is propagated over the existence time of the solution. This extends a recent result of Bertozzi, Garnett, Laurent, and Verdera for patch boundary regularity for the aggregation equation.

[1]  Andrew J. Majda,et al.  Vorticity and the mathematical theory of incompressible fluid flow , 1986 .

[2]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[3]  F. Fanelli Conservation of Geometric Structures for Non-Homogeneous Inviscid Incompressible Fluids , 2012, 1305.1128.

[4]  J. Kelliher Expanding Domain Limit for Incompressible Fluids in the Plane , 2008 .

[5]  P. Gamblin,et al.  On three-dimensional vortex patches , 1995 .

[6]  T. Broadbent Measure and Integral , 1957, Nature.

[7]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[8]  Bevan K. Youse,et al.  Introduction to real analysis , 1972 .

[9]  Joan Verdera,et al.  The Regularity of the Boundary of a Multidimensional Aggregation Patch , 2015, SIAM J. Math. Anal..

[10]  G. Gie,et al.  The aggregation equation with Newtonian potential: The vanishing viscosity limit , 2017 .

[11]  Robert L. Foote,et al.  Regularity of the distance function , 1984 .

[12]  Laurent Desvillettes,et al.  On two-dimensional Hamiltonian transport equations with continuous coefficients , 2001, Differential and Integral Equations.

[13]  Andrea L. Bertozzi,et al.  Global regularity for vortex patches , 1993 .

[14]  P. Serfati UNE PREUVE DIRECTE D'EXISTENCE GLOBALE DES VORTEX PATCHES 2D , 1994 .

[15]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[16]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[17]  J. Chemin,et al.  Persistance de structures géométriques dans les fluides incompressibles bidimensionnels , 1993 .

[18]  Hantaek Bae,et al.  Striated Regularity for the Euler Equations , 2015, 1508.01915.

[19]  P. Serfati Etude mathématique de flammes infiniment minces en combustion. Résultats de structure et de régularité pour l'équation d'Euler incompressible , 1992 .