Phenotypic, Genotypic and Proteomic Variations between Poor and Robust Colonizing Campylobacter jejuni strains.

[1]  Beau B. Bruce,et al.  Preliminary Incidence and Trends of Infections Caused by Pathogens Transmitted Commonly Through Food — Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2022 , 2023, MMWR. Morbidity and mortality weekly report.

[2]  Yin Dai,et al.  Flagellar rotor protein FliG is involved in the virulence of avian pathogenic Escherichia coli. , 2021, Microbial pathogenesis.

[3]  B. Wren,et al.  Revisiting Campylobacter jejuni Virulence and Fitness Factors: Role in Sensing, Adapting, and Competing , 2021, Frontiers in Cellular and Infection Microbiology.

[4]  B. Khajanchi,et al.  Draft Genome Sequences of Two Campylobacter jejuni Strains That Show Significantly Different Colonization Potentials in Chickens , 2020, Microbiology Resource Announcements.

[5]  J. Chon,et al.  Virulence Characteristics of mecA-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci , 2020, Microorganisms.

[6]  T. Kovács,et al.  Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival , 2020, Microorganisms.

[7]  X. Jiao,et al.  Investigating the Role of FlhF Identifies Novel Interactions With Genes Involved in Flagellar Synthesis in Campylobacter jejuni , 2020, Frontiers in Microbiology.

[8]  V. DiRita,et al.  Phosphate Transporter PstSCAB of Campylobacter jejuni Is a Critical Determinant of Lactate-Dependent Growth and Colonization in Chickens , 2020, Journal of bacteriology.

[9]  Xiangan Lin,et al.  Bioinformatics Analysis of Potential Key Genes in Trastuzumab-Resistant Gastric Cancer , 2019, Disease markers.

[10]  Rick L. Stevens,et al.  The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities , 2019, Nucleic Acids Res..

[11]  Yoko Sato,et al.  KEGG Mapper for inferring cellular functions from protein sequences , 2019, Protein science : a publication of the Protein Society.

[12]  K. Fiedoruk,et al.  Whole-genome comparative analysis of Campylobacter jejuni strains isolated from patients with diarrhea in northeastern Poland , 2019, Gut Pathogens.

[13]  S. Backert,et al.  Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice , 2019, Front. Cell. Infect. Microbiol..

[14]  S. Raina,et al.  Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects , 2019, International journal of molecular sciences.

[15]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[16]  jinlin huang,et al.  Insights into the impact of flhF inactivation on Campylobacter jejuni colonization of chick and mice gut , 2018, BMC Microbiology.

[17]  D. Hendrixson,et al.  FliW controls growth-phase expression of Campylobacter jejuni flagellar and non-flagellar proteins via the post-transcriptional regulator CsrA. , 2018, Microbiology.

[18]  Keith A Jolley,et al.  Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications , 2018, Wellcome open research.

[19]  Christine J. Boinett,et al.  Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System , 2018, mBio.

[20]  M. Wösten,et al.  Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels , 2018, Environmental microbiology.

[21]  D. Sack,et al.  Campylobacter jejuni transcriptional and genetic adaptation during human infection , 2018, Nature Microbiology.

[22]  R. Poole,et al.  Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability , 2017, Environmental microbiology.

[23]  Yi Chen,et al.  Whole Genome and Core Genome Multilocus Sequence Typing and Single Nucleotide Polymorphism Analyses of Listeria monocytogenes Isolates Associated with an Outbreak Linked to Cheese, United States, 2013 , 2017, Applied and Environmental Microbiology.

[24]  W. Eisenreich,et al.  Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni , 2017, PLoS biology.

[25]  Aldert L. Zomer,et al.  Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models , 2016, Scientific Reports.

[26]  J. Gaddy,et al.  The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni , 2016, mBio.

[27]  M. Stevens,et al.  Evaluation of flagellum-related proteins FliD and FspA as subunit vaccines against Campylobacter jejuni colonisation in chickens , 2016, Vaccine.

[28]  S. Makino,et al.  Ex vivo proteomics of Campylobacter jejuni 81-176 reveal that FabG affects fatty acid composition to alter bacterial growth fitness in the chicken gut. , 2016, Research in microbiology.

[29]  G. Sachs,et al.  Phosphorylation‐dependent and Phosphorylation‐independent Regulation of Helicobacter pylori Acid Acclimation by the ArsRS Two‐component System , 2016, Helicobacter.

[30]  P. Whyte,et al.  The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter , 2016, Infection ecology & epidemiology.

[31]  C. Parker,et al.  The Campylobacter jejuni CprRS two‐component regulatory system regulates aspects of the cell envelope , 2015, Molecular microbiology.

[32]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[33]  Z. Pan,et al.  Use of in vivo-induced antigen technology to identify in vivo-expressed genes of Campylobacter jejuni during human infection. , 2014, Journal of microbiology and biotechnology.

[34]  A. Otto,et al.  Quantitative proteomics in the field of microbiology , 2014, Proteomics.

[35]  P. Hoffman,et al.  Response to Metronidazole and Oxidative Stress Is Mediated through Homeostatic Regulator HsrA (HP1043) in Helicobacter pylori , 2013, Journal of bacteriology.

[36]  Michael E. Taveirne,et al.  The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq , 2013, PloS one.

[37]  Y. Ni,et al.  Screening Helicobacter pylori genes induced during infection of mouse stomachs. , 2012, World journal of gastroenterology.

[38]  Roy Curtiss,et al.  The Campylobacter jejuni Dps Homologue Is Important for In Vitro Biofilm Formation and Cecal Colonization of Poultry and May Serve as a Protective Antigen for Vaccination , 2012, Clinical and Vaccine Immunology.

[39]  G. Igrejas,et al.  After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli? , 2012, Journal of proteomics.

[40]  J. Bernhardt,et al.  Global relative and absolute quantitation in microbial proteomics. , 2012, Current opinion in microbiology.

[41]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[42]  C. Arraiano,et al.  Exoribonucleases as Modulators of Virulence in Pathogenic Bacteria , 2012, Front. Cell. Inf. Microbio..

[43]  Victor J. DiRita,et al.  Characterization of Campylobacter jejuni RacRS Reveals Roles in the Heat Shock Response, Motility, and Maintenance of Cell Length Homogeneity , 2012, Journal of bacteriology.

[44]  F. Haesebrouck,et al.  Poultry as a host for the zoonotic pathogen Campylobacter jejuni. , 2012, Vector borne and zoonotic diseases.

[45]  F. Haesebrouck,et al.  Colonization factors of Campylobacter jejuni in the chicken gut , 2011, Veterinary research.

[46]  T. Kakuda,et al.  Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni. , 2011, Microbiology.

[47]  A. Stintzi,et al.  Use of a Rabbit Soft Tissue Chamber Model to Investigate Campylobacter Jejuni–Host Interactions , 2010, Front. Microbio..

[48]  S. Markey,et al.  MassSieve: Panning MS/MS peptide data for proteins , 2010, Proteomics.

[49]  U. Groß,et al.  Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. , 2010, International journal of medical microbiology : IJMM.

[50]  C. Day,et al.  Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni , 2010, Molecular microbiology.

[51]  Carrie Goodson,et al.  The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. , 2009, Microbial pathogenesis.

[52]  H. Ingmer,et al.  Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth , 2009, Applied and Environmental Microbiology.

[53]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[54]  Shigeki Yamamoto,et al.  Campylobacter contamination in retail poultry meats and by-products in the world: a literature survey. , 2009, The Journal of veterinary medical science.

[55]  Lindsay M. Davis,et al.  The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization , 2009, Molecular microbiology.

[56]  R. Mandrell,et al.  Autoinducer-2 Production in Campylobacter jejuni Contributes to Chicken Colonization , 2008, Applied and Environmental Microbiology.

[57]  T. Read,et al.  Characterization of Two Campylobacter jejuni Strains for Use in Volunteer Experimental-Infection Studies , 2008, Infection and Immunity.

[58]  B. Tall,et al.  Enhanced Microscopic Definition of Campylobacter jejuni 81-176 Adherence to, Invasion of, Translocation across, and Exocytosis from Polarized Human Intestinal Caco-2 Cells , 2008, Infection and Immunity.

[59]  A. Conlan,et al.  Comparison of challenge models for determining the colonization dose of Campylobacter jejuni in broiler chicks. , 2008, Poultry science.

[60]  B. Seal,et al.  Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine , 2008, Functional & Integrative Genomics.

[61]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[62]  A. Stintzi,et al.  Identification of Campylobacter jejuni Genes Involved in the Response to Acidic pH and Stomach Transit , 2008, Applied and Environmental Microbiology.

[63]  M. Bagnall,et al.  γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni , 2007 .

[64]  B. Seal,et al.  Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. , 2007, Journal of proteome research.

[65]  G. Sachs,et al.  Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface , 2007, Proceedings of the National Academy of Sciences.

[66]  S. J. Billington,et al.  Characterization of Campylobacter jejuni Biofilms under Defined Growth Conditions , 2007, Applied and Environmental Microbiology.

[67]  Brendan MacLean,et al.  General framework for developing and evaluating database scoring algorithms using the TANDEM search engine , 2006, Bioinform..

[68]  Jeff F. Miller,et al.  Campylobacter jejuni Colonization of Mice with Limited Enteric Flora , 2006, Infection and Immunity.

[69]  D. Hendrixson A phase‐variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism , 2006, Molecular microbiology.

[70]  P. Thibault,et al.  Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence , 2006, Molecular microbiology.

[71]  G. Salvat,et al.  Genomic Diversity of Campylobacter coli and Campylobacter jejuni Isolates Recovered from Free-Range Broiler Farms and Comparison with Isolates of Various Origins , 2005, Applied and Environmental Microbiology.

[72]  D. Maskell,et al.  Campylobacter jejuni Gene Expression in the Chick Cecum: Evidence for Adaptation to a Low-Oxygen Environment , 2005, Infection and Immunity.

[73]  Brian H. Raphael,et al.  The Campylobacter jejuni Response Regulator, CbrR, Modulates Sodium Deoxycholate Resistance and Chicken Colonization , 2005, Journal of bacteriology.

[74]  R. Panciera,et al.  Use of Genome-Wide Expression Profiling and Mutagenesis To Study the Intestinal Lifestyle of Campylobacter jejuni , 2005, Infection and Immunity.

[75]  S. Falkow,et al.  The Campylobacter jejuni dccRS two‐component system is required for optimal in vivo colonization but is dispensable for in vitro growth , 2004, Molecular microbiology.

[76]  A. Stintzi,et al.  Iron Acquisition and Regulation in Campylobacter jejuni , 2004, Journal of bacteriology.

[77]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[78]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[79]  Stephen H. Bryant,et al.  Open mass spectrometry search algorithm. , 2004, Journal of proteome research.

[80]  Eduardo N. Taboada,et al.  Genome-wide Expression Analyses of Campylobacter jejuni NCTC11168 Reveals Coordinate Regulation of Motility and Virulence by flhA*[boxs] , 2004, Journal of Biological Chemistry.

[81]  V. DiRita,et al.  Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract , 2004, Molecular microbiology.

[82]  S. Falkow,et al.  The Genome-Sequenced Variant of Campylobacter jejuni NCTC 11168 and the Original Clonal Clinical Isolate Differ Markedly in Colonization, Gene Expression, and Virulence-Associated Phenotypes , 2004, Journal of bacteriology.

[83]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[84]  D. Beier,et al.  Two-Component Systems of Helicobacter pylori Contribute to Virulence in a Mouse Infection Model , 2003, Infection and Immunity.

[85]  S. Altekruse,et al.  Human campylobacteriosis: a challenge for the veterinary profession. , 2003, Journal of the American Veterinary Medical Association.

[86]  K. Jones,et al.  Cattle and sheep farms as reservoirs of Campylobacter , 2003, Journal of applied microbiology.

[87]  O. Sahin,et al.  Campylobacter colonization in poultry: sources of infection and modes of transmission , 2002, Animal Health Research Reviews.

[88]  S. Normark,et al.  Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  H. Boureau,et al.  Role of FliC and FliD Flagellar Proteins ofClostridium difficile in Adherence and Gut Colonization , 2001, Infection and Immunity.

[90]  J. Line,et al.  Development of a selective differential agar for isolation and enumeration of Campylobacter spp. , 2001, Journal of food protection.

[91]  M. Hume,et al.  Role of Campylobacter jejuni potential virulence genes in cecal colonization. , 2001, Avian diseases.

[92]  V. DiRita,et al.  Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility , 2001, Molecular microbiology.

[93]  B. Wren,et al.  Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity , 2000, Molecular microbiology.

[94]  J. Ketley,et al.  Transcellular translocation of Campylobacter jejuni across human polarised epithelial monolayers , 1999 .

[95]  B. Wren,et al.  A Novel Campylobacter jejuniTwo-Component Regulatory System Important for Temperature-Dependent Growth and Colonization , 1999, Journal of bacteriology.

[96]  J. Klena,et al.  Characterization of the Thermal Stress Response ofCampylobacter jejuni , 1998, Infection and Immunity.

[97]  S. Altekruse,et al.  Microbial food borne pathogens. Campylobacter jejuni. , 1998, The Veterinary clinics of North America. Food animal practice.

[98]  M. Blaser Epidemiologic and clinical features of Campylobacter jejuni infections. , 1997, The Journal of infectious diseases.

[99]  J Baranyi,et al.  A dynamic approach to predicting bacterial growth in food. , 1994, International journal of food microbiology.

[100]  T. Wassenaar,et al.  Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. , 1993, Journal of general microbiology.

[101]  R. Walker,et al.  Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp , 1991, Infection and immunity.

[102]  I. Nachamkin,et al.  Infection of adult Syrian hamsters with flagellar variants of Campylobacter jejuni , 1990, Infection and immunity.

[103]  M. Doyle,et al.  Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni , 1988, Applied and environmental microbiology.

[104]  N. Stern,et al.  Colonization characteristics of Campylobacter jejuni in chick ceca. , 1988, Avian diseases.

[105]  B. Kaijser,et al.  Natural campylobacter colonization in chickens raised under different environmental conditions , 1986, Journal of Hygiene.

[106]  H. McBride,et al.  Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines , 1985, Journal of Hygiene.

[107]  S. Engelmann,et al.  Proteomic analysis to investigate regulatory networks in Staphylococcus aureus. , 2008, Methods in molecular biology.

[108]  Kei-Hoi Cheung,et al.  X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers. , 2008, Journal of proteome research.

[109]  M. C. Peterson Rheumatic manifestations of Campylobacter jejuni and C. fetus infections in adults. , 1994, Scandinavian journal of rheumatology.