Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs

Sledgehammer integrates external automatic theorem provers (ATPs) in the Isabelle/HOL proof assistant. To guard against bugs, ATP proofs must be reconstructed in Isabelle. Reconstructing complex proofs involves translating them to detailed Isabelle proof texts, using suitable proof methods to justify the inferences. This has been attempted before with little success, but we have addressed the main issues: Sledgehammer now transforms the proofs by contradiction into direct proofs (as described in a companion paper [4]); it reconstructs skolemization inferences; it provides the right amount of type annotations to ensure formulas are parsed correctly without overwhelming them with types; and it iteratively tests and compresses the output, resulting in simpler and faster proofs.

[1]  Lawrence C. Paulson,et al.  Translating Higher-Order Clauses to First-Order Clauses , 2007, Journal of Automated Reasoning.

[2]  Makarius Wenzel Isabelle/Isar — a Generic Framework for Human-Readable Proof Documents , 2007 .

[3]  Chad E. Brown,et al.  Satallax: An Automatic Higher-Order Prover , 2012, IJCAR.

[4]  Cezary Kaliszyk,et al.  PRocH: Proof Reconstruction for HOL Light , 2013, CADE.

[5]  Karol Pak THE ALGORITHMS FOR IMPROVING AND REORGANIZING NATURAL DEDUCTION PROOFS , 2010 .

[6]  Stephan Schulz,et al.  System Description: E 0.81 , 2004, IJCAR.

[7]  Lawrence C. Paulson,et al.  LEO-II and Satallax on the Sledgehammer test bench , 2013, J. Appl. Log..

[8]  Geoff Sutcliffe,et al.  TSTP Data-Exchange Formats for Automated Theorem Proving Tools , 2004 .

[9]  J. Hurd First-Order Proof Tactics in Higher-Order Logic Theorem Provers In Proc , 2003 .

[10]  Karol Pak Methods of Lemma Extraction in Natural Deduction Proofs , 2012, Journal of Automated Reasoning.

[11]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[12]  Christoph Benzmüller,et al.  Progress Report on LEO-II -- An Automatic Theorem Prover for Higher-Order Logic , 2007 .

[13]  Cezary Kaliszyk,et al.  Learning-Assisted Automated Reasoning with Flyspeck , 2012, Journal of Automated Reasoning.

[14]  Karol P¡k,et al.  The Methods of Improving and Reorganizing Natural Deduction Proofs , 2010 .

[15]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[16]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[17]  Jesse Alama,et al.  Escape to Mizar from ATPs , 2012, PAAR@IJCAR.

[18]  Markus Wenzel,et al.  Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.

[19]  Tobias Nipkow,et al.  Isabelle/HOL , 2002, Lecture Notes in Computer Science.

[20]  R. Matuszewski,et al.  M IZAR : the first 30 years , 2005 .

[21]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[22]  Lawrence C. Paulson,et al.  Source-Level Proof Reconstruction for Interactive Theorem Proving , 2007, TPHOLs.

[23]  Jasmin Christian Blanchette,et al.  Automatic proofs and refutations for higher-order logic , 2012 .

[24]  Thomas Hillenbrand,et al.  WALDMEISTER - High-Performance Equational Deduction , 1997, Journal of Automated Reasoning.

[25]  Tobias Nipkow,et al.  Sledgehammer: Judgement Day , 2010, IJCAR.

[26]  Hans de Nivelle,et al.  Translation of resolution proofs into short first-order proofs without choice axioms , 2005, Inf. Comput..

[27]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[28]  Georges Henri Halphen Thèses présentées à la Faculté des Sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques , 1878 .

[29]  Jasmin Christian Blanchette,et al.  Redirecting Proofs by Contradiction , 2013, PxTP@CADE.

[30]  Matthew Wampler-Doty,et al.  A Complete Proof of the Robbins Conjecture , 2010, Arch. Formal Proofs.

[31]  Sascha Böhme,et al.  Fast LCF-Style Proof Reconstruction for Z3 , 2010, ITP.