Déformation de courbes et surfaces multirésolution sous contraintes. (Constrained deformation of multiresolution curves and surfaces)

Dans le domaine de la modelisation geometrique comme dans le domaine de l'informatique graphique, les utilisateurs sont toujours en quete d'outils ergonomiques pour editer et deformer des courbes et des surfaces. La construction de ces outils necessite d'abord un choix pertinent de modeles mathematiques pour representer ces objets geometriques. Ensuite, l'adjonction de contraintes geometriques, integrees dans l'outil d'edition, peut faciliter la manipulation. L'objet de ce manuscrit est d'etudier l'integration de contraintes non lineaires dans la deformation multiresolution de courbes et de surfaces lisses. Nous abordons successivement la conservation de l'aire inscrite dans une courbe B-spline plane, la conservation du volume englobe par une surface B-spline, la conservation du volume englobe par une surface de topologie arbitraire (parametree sur un maillage triangulaire), et la conservation de la longueur d'une courbe lineaire par morceaux. Les modeles multiresolution, bases sur des analyses en ondelettes, permettent de creer aisement des deformations a differentes echelles sur des objets complexes, tout en conservant les details fins. Les contraintes sont calculees dans la base multiresolution, puis integrees grâce a des optimisations sous contraintes. Les deformations gagnent ainsi en realisme, sans que l'utilisateur n'ait a intervenir. Les methodes que nous developpons fonctionnent interactivement, et sont etudiees pour s'adapter a differents types de deformations.

[1]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[2]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[3]  C. Schlick,et al.  Hb-splines: a Blend of Hermite Splines and B-splines , 2007 .

[4]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[5]  John A. Roulier,et al.  Prescribing the length of rational Bézier curves , 1996, Comput. Aided Geom. Des..

[6]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[7]  Kai Tang,et al.  Modeling wrinkles on smooth surfaces for footwear design , 2005, Comput. Aided Des..

[8]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[9]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[10]  Paolo Cignoni,et al.  Multiresolution Representation and Visualization of Volume Data , 1997, IEEE Trans. Vis. Comput. Graph..

[11]  Georges-Pierre Bonneau,et al.  Hierarchical decomposition of datasets on irregular surface meshes , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[12]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[13]  Alfred Mertins,et al.  Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications , 1999 .

[14]  Nadia Magnenat-Thalmann,et al.  Simulation of static and dynamic wrinkles of skin , 1996, Proceedings Computer Animation '96.

[15]  Martin Bertram,et al.  Biorthogonal Loop-Subdivision Wavelets , 2004, Computing.

[16]  David Salesin,et al.  Multiresolution curves , 1994, SIGGRAPH.

[17]  John Lasseter,et al.  Principles of traditional animation applied to 3D computer animation , 1987, SIGGRAPH.

[18]  Martin Bertram,et al.  Single-knot wavelets for non-uniform B-splines , 2005, Comput. Aided Geom. Des..

[19]  Leif Kobbelt,et al.  Multiresolution Surface Representation Based on Displacement Volumes , 2003, Comput. Graph. Forum.

[20]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[21]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[22]  Kaihuai Qin,et al.  Unlifted loop subdivision wavelets , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[23]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[24]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[25]  Georges-Pierre Bonneau,et al.  Multiresolution Analysis on Irregular Surface Meshes , 1998, IEEE Trans. Vis. Comput. Graph..

[26]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[27]  Gershon Elber,et al.  Multiresolution curve editing with linear constraints , 2001, SMA '01.

[28]  Hans Hagen,et al.  Variational Surface Design and Surface Interrogation , 1993, Comput. Graph. Forum.

[29]  Barry Fowler,et al.  Geometric manipulation of tensor product surfaces , 1992, I3D '92.

[30]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[31]  Hans-Peter Seidel,et al.  Ridge-valley lines on meshes via implicit surface fitting , 2004, ACM Trans. Graph..

[32]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[33]  Hong Qin,et al.  Dynamic NURBS with geometric constraints for interactive sculpting , 1994, TOGS.

[34]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[35]  Mathieu Desbrun,et al.  Animating soft substances with implicit surfaces , 1995, SIGGRAPH.

[36]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[37]  Marie-Paule Cani,et al.  Real-time dynamic wrinkles , 2004 .

[38]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[39]  Jörg Peters,et al.  Computing moments of objects enclosed by piecewise polynomial surfaces , 1998, TOGS.

[40]  Nadia Magnenat-Thalmann,et al.  Animating wrinkles on clothes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[41]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[42]  Nadia Magnenat-Thalmann,et al.  Simulation of Skin Aging and Wrinkles with Cosmetics Insight , 2000, Computer Animation and Simulation.

[43]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[44]  Thierry Blu,et al.  An Exact Method for Computing the Area Moments of Wavelet and Spline Curves , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Nadia Magnenat-Thalmann,et al.  Simulating wrinkles and skin aging , 1999, The Visual Computer.

[46]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[47]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[48]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[49]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[50]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[51]  Gregory M. Nielson,et al.  BLaC-wavelets: a multiresolution analysis with non-nested spaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[52]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[53]  Xiaogang Jin,et al.  Arc-length-based axial deformation and length preserved animation , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[54]  Marie-Luce Viaud,et al.  Facial animation with wrinkles , 1992 .

[55]  Rémy Prost,et al.  Wavelet-based multiresolution analysis of irregular surface meshes , 2004, IEEE Transactions on Visualization and Computer Graphics.

[56]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[57]  Albert Cohen,et al.  Compact representation of images by edge adapted multiscale transforms , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[58]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Mathieu Desbrun,et al.  Adaptive simulation of soft bodies in real-time , 2000, Proceedings Computer Animation 2000.

[60]  Luc Biard,et al.  Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes , 2004, Numerical Algorithms.

[61]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[62]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[63]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[64]  Stefanie Hahmann,et al.  Hierarchical triangular splines , 2005, TOGS.

[65]  Tom Lyche,et al.  Theory and Algorithms for Non-Uniform Spline Wavelets , 2001 .

[66]  Alla Sheffer,et al.  Volume-preserving free-form solids , 1995, IEEE Trans. Vis. Comput. Graph..

[67]  Michael F. Cohen,et al.  Hierarchical and variational geometric modeling with wavelets , 1995, I3D '95.