데이터 공학 : 대용량 그래프에서 k-차수 인덱스 테이블을 이용한RDBMS 기반의 효율적인 최단 경로 탐색 기법
暂无分享,去创建一个
소셜 네트워크, 웹 페이지 링크, 교통 네트워크 등과 같은 최근의 네트워크들은 노드와 에지의 수가 방대한 빅 데이터이다. 소셜 네트워크 서비스나 네비게이션 서비스와 같이 이와 같은 네트워크를 이용하는 애플리케이션이 많아지고 있다. 대용량 네트워크는 전체를 메모리에 적재할 수 없어, 기존의 네트워크 분석 기술을 활용할 수 없다. 최근 대용량 그래프의 효율적 탐색을 제공하는 RDB 기반 연산자들이프레임워크(Frontier-expand-merge framework, FEM)로 제안되었다. FEM은 효율적인 최단 경로 탐색을 위해 부분 최단 경로를 저장하는RDB 기반의 인덱스 테이블을 구축하였다. 그러나 FEM의 인덱스 테이블은 최단 경로에 포함될 확률보다 인덱스의 거리에 의해 결정되기때문에 인덱스 테이블 참조율이 떨어진다. 본 논문에서는 효율적인 최단 경로 탐색을 지원하는 인덱스 참조율이 높은 차수가 큰 노드들을이용한 인덱스 테이블 구축 기법을 제안한다. 실험을 통하여 제안하는 인덱스 테이블 구축 기법이 실세계 데이터 셋에서 효율적인 최단 경로 탐색을 지원함을 보인다.