Turing and randomness
暂无分享,去创建一个
[1] M. Borel. Les probabilités dénombrables et leurs applications arithmétiques , 1909 .
[2] P. Erdös,et al. Note on normal numbers , 1946 .
[3] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[4] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..
[5] Alexander Shen,et al. Ergodic-Type Characterizations of Algorithmic Randomness , 2010, CiE.
[6] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[7] Jonathan P. Bowen,et al. Turing's legacy , 2017, The Turing Guide.
[8] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..
[9] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[10] A. Church. On the concept of a random sequence , 1940 .
[11] Claus-Peter Schnorr,et al. Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.
[12] Verónica Becher,et al. Turing's Normal Numbers: Towards Randomness , 2012, CiE.
[13] É. Borel. Leçons sur la théorie des fonctions , 2009 .
[14] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[15] Mark Braverman,et al. Non-computable Julia sets , 2004, ArXiv.
[16] Santiago Figueira,et al. An example of a computable absolutely normal number , 2002, Theor. Comput. Sci..
[17] Avi Wigderson,et al. P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.
[18] Tom Meyerovitch,et al. A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.
[19] Hector Zenil. Randomness Through Computation: Some Answers, More Questions , 2011 .
[20] Verónica Becher,et al. A polynomial-time algorithm for computing absolutely normal numbers , 2013, Inf. Comput..
[21] S. S. Pillai,et al. On normal numbers , 1939 .
[22] W. Fouché. The Descriptive Complexity of Brownian Motion , 2000 .
[23] David H. Bailey,et al. On the Random Character of Fundamental Constant Expansions , 2001, Exp. Math..
[24] Santiago Figueira,et al. Turing's unpublished algorithm for normal numbers , 2007, Theor. Comput. Sci..
[25] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[26] Leonid A. Levin,et al. Some theorems on the algorithmic approach to probability theory and information theory: (1971 Dissertation directed by A.N. Kolmogorov) , 2010, Ann. Pure Appl. Log..
[27] A. Nies. Computability and randomness , 2009 .
[28] A. M. Turing,et al. Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.
[29] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[30] Erhard Tornier,et al. Grundlagen der Wahrscheinlichkeitsrechnung , 1933 .
[31] Y. Bugeaud. Nombres de Liouville et nombres normaux , 2002 .
[32] W. Sierpinski,et al. Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'une tel nombre , 1917 .
[33] H. Lebesgue. Sur certaines démonstrations d'existence , 1917 .
[34] Ronald de Wolf,et al. Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.
[35] Claus-Peter Schnorr,et al. Endliche Automaten und Zufallsfolgen , 1972, Acta Informatica.
[36] Bulletin de la Société Mathématique de France , 2022 .
[37] Jack H. Lutz,et al. Finite-State Dimension , 2001, ICALP.
[38] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[39] N. V. Vinodchandran,et al. Entropy rates and finite-state dimension , 2005, Theor. Comput. Sci..
[40] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..