Convex Optimization in Normed Spaces

Functional and convex analysis are closely intertwined. In this chapter we recall the basic concepts and results from functional analysis and calculus that will be needed throughout this book. A first section is devoted to general normed spaces. We begin by establishing some of their main properties, with an emphasis on the linear functions between spaces. This leads us to bounded linear functionals and the topological dual. Second, we review the Hahn-Banach Separation Theorem, a very powerful tool with important consequences. It also illustrates the fact that the boundaries between functional and convex analysis can be rather fuzzy at times. Next, we discuss some relevant results concerning the weak topology, especially in terms of closedness and compactness. Finally, we include a subsection on differential calculus, which also provides an introduction to standard smooth optimization techniques. The second section deals with Hilbert spaces, and their very rich geometric structure, including the ideas of projection and orthogonality. We also revisit some of the general concepts from the first section (duality, reflexivity, weak convergence) in the light of this geometry. For a comprehensive presentation, the reader is referred to [30] and [94].

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[3]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[4]  R. C. James,et al.  Reflexivity and the Supremum of Linear Functionals , 1957 .

[5]  W. Cheney,et al.  Proximity maps for convex sets , 1959 .

[6]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[7]  A. Goldstein Convex programming in Hilbert space , 1964 .

[8]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[9]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[10]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[11]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[12]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[13]  M. Hestenes Multiplier and gradient methods , 1969 .

[14]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[15]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[16]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[17]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[18]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[19]  Yoshikazu Kobayashi Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups , 1975 .

[20]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[21]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[22]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[23]  H. Brezis,et al.  Produits infinis de resolvantes , 1978 .

[24]  J. Baillon,et al.  Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .

[25]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[26]  Jonathan M. Borwein,et al.  A NOTE ON "-SUBGRADIENTS AND MAXIMAL MONOTONICITY , 1982 .

[27]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[28]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[29]  H. Attouch,et al.  Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .

[30]  A. Auslender,et al.  Penalty-proximal methods in convex programming , 1987 .

[31]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[32]  P. Alart,et al.  Penalization in non-classical convex programming via variational convergence , 1991, Math. Program..

[33]  Michael C. Ferris,et al.  Finite termination of the proximal point algorithm , 1991, Math. Program..

[34]  G. Folland Fourier analysis and its applications , 1992 .

[35]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[36]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[37]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[38]  Jonathan Eckstein Some Saddle-function splitting methods for convex programming , 1994 .

[39]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[40]  Roberto Cominetti,et al.  Asymptotic analysis of the exponential penalty trajectory in linear programming , 1994, Math. Program..

[41]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[42]  A. Iusem,et al.  Full convergence of the steepest descent method with inexact line searches , 1995 .

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[45]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[46]  F. Alvarez Absolute minimizer in convex programming by exponential penalty. , 2000 .

[47]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[48]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[49]  Roberto Cominetti,et al.  Primal and dual convergence of a proximal point exponential penalty method for linear programming , 2002, Math. Program..

[50]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[51]  Roberto Cominetti,et al.  Coupling General Penalty Schemes for Convex Programming with the Steepest Descent and the Proximal Point Algorithm , 2002, SIAM J. Optim..

[52]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[53]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[54]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[55]  Claudia A. Sagastizábal,et al.  An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter , 2005, SIAM J. Optim..

[56]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[57]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[58]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Marc Teboulle,et al.  Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..

[60]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[61]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[62]  Patrick Redont,et al.  A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..

[63]  Paul Tseng,et al.  Exact Regularization of Convex Programs , 2007, SIAM J. Optim..

[64]  M. H. Xu Proximal Alternating Directions Method for Structured Variational Inequalities , 2007 .

[65]  J. Bolte,et al.  Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .

[66]  J. Peypouquet ASYMPTOTIC CONVERGENCE TO THE OPTIMAL VALUE OF DIAGONAL PROXIMAL ITERATIONS IN CONVEX MINIMIZATION , 2008 .

[67]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[68]  Juan Peypouquet,et al.  Asymptotic equivalence and Kobayashi-type estimates fornonautonomous monotone operators in Banach spaces , 2009 .

[69]  S. Sorin,et al.  Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.

[70]  H. Attouch,et al.  ALTERNATING PROXIMAL ALGORITHMS FOR CONSTRAINED VARIATIONAL INEQUALITIES. APPLICATION TO DOMAIN DECOMPOSITION FOR PDE’S , 2010 .

[71]  Convex Optimization in Signal Processing and Communications , 2010 .

[72]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[73]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[74]  Juan Peypouquet,et al.  Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces☆ , 2010 .

[75]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[76]  Juan Peypouquet,et al.  A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions , 2011 .

[77]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[78]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[79]  Juan Peypouquet,et al.  Prox-Penalization and Splitting Methods for Constrained Variational Problems , 2011, SIAM J. Optim..

[80]  Exactness conditions for a convex differentiable exterior penalty for linear programming , 2011 .

[81]  Juan Peypouquet,et al.  Coupling Forward-Backward with Penalty Schemes and Parallel Splitting for Constrained Variational Inequalities , 2011, SIAM J. Optim..

[82]  Juan Peypouquet,et al.  Coupling the Gradient Method with a General Exterior Penalization Scheme for Convex Minimization , 2012, J. Optim. Theory Appl..

[83]  Juan Peypouquet,et al.  Lagrangian-Penalization Algorithm for Constrained Optimization and Variational Inequalities , 2012 .

[84]  Juan Peypouquet,et al.  Forward–Backward Penalty Scheme for Constrained Convex Minimization Without Inf-Compactness , 2013, J. Optim. Theory Appl..

[85]  Giorgio C. Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.

[86]  Marc Teboulle,et al.  Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..

[87]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .