A comparison of moment-based methods of estimation for the log Pearson type 3 distribution
暂无分享,去创建一个
[1] Donthamsetti Veerabhadra Rao. Log Pearson Type 3 Distribution: Method of Mixed Moments , 1980 .
[2] B. Bobée,et al. The gamma family and derived distributions applied in hydrology , 1991 .
[3] Taha B. M. J. Ouarda,et al. Approximate Confidence Intervals for Quantiles of Gamma and Generalized Gamma Distributions , 1998 .
[4] B. Bobée,et al. The generalized method of moments as applied to problems of flood frequency analysis: Some practical results for the log-Pearson type 3 distribution , 1987 .
[5] M. A. Benson,et al. Uniform Flood-Frequency Estimating Methods for Federal Agencies , 1968 .
[6] Variance of the T-year event in the log Pearson type-3 distribution , 1986 .
[7] I. A. Koutrouvelis,et al. Estimation in the Pearson type 3 distribution , 1999 .
[8] Fahim Ashkar,et al. Generalized Method of Moments Applied to LP3 Distribution , 1988 .
[9] Huynh Ngoc Phine,et al. LOG PEARSON TYPE-3 DISTRIBUTION: PARAMETER ESTIMATION , 1983 .
[10] Fitting the Pearson type 3 distribution in practice , 1977 .
[11] B. Bobée. Comment on ‘Fitting the Pearson type 3 distribution in practice’ by J. Buckett and F. R. Oliver , 1979 .
[12] K. Arora,et al. A comparative evaluation of the estimators of the log Pearson type (LP) 3 distribution , 1989 .
[13] Jery R. Stedinger,et al. Confidence Interval for Design Floods with Estimated Skew Coefficient , 1991 .
[14] W. L. Lane,et al. An algorithm for computing moments‐based flood quantile estimates when historical flood information is available , 1997 .
[15] B. Bobée,et al. The Log Pearson type 3 distribution and its application in hydrology , 1975 .
[16] B. Bobée. Sample error of T‐year events commuted by fitting a Pearson type 3 distribution , 1973 .
[17] Donthamsetti Veerabhadra Rao. Estimating Log Pearson Parameters by Mixed Moments , 1983 .
[18] S. Burges,et al. Sampling properties of parameter estimates for the log Pearson type 3 distribution, using moments in real space , 1981 .
[19] S. Burges,et al. Approximate estimation of the derivative of a standard gamma quantile for use in confidence interval estimates , 1981 .