Analytic theory of narrow lattice solitons

The profiles of narrow lattice solitons are calculated analytically using perturbation analysis. A stability analysis shows that solitons centred at a lattice (potential) maximum or saddle point are unstable, as they drift towards the nearest lattice minimum. This instability can, however, be so weak that the soliton is 'mathematically unstable' but 'physically stable'. Stability of solitons centred at a lattice minimum depends on the dimension of the problem and on the nonlinearity. In the subcritical and supercritical cases, the lattice does not affect the stability, leaving the solitons stable and unstable, respectively. In contrast, in the critical case (e.g. a cubic nonlinearity in two transverse dimensions), the lattice stabilizes the (previously unstable) solitons. The stability in this case can be so weak, however, that the soliton is 'mathematically stable' but 'physically unstable'.

[1]  Reika Fukuizumi,et al.  Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential , 2001 .

[2]  G. Fibich,et al.  Stability of solitary waves for nonlinear Schrdinger equations with inhomogeneous nonlinearities , 2003 .

[3]  G. Fibich,et al.  Waves in nonlinear lattices: ultrashort optical pulses and Bose-Einstein condensates. , 2006, Physical review letters.

[4]  Yuri S. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2003 .

[5]  M. Grossi On the number of single-peak solutions of the nonlinear Schrödinger equation , 2002 .

[6]  Yuri Kivshar,et al.  Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices. , 2004, Optics Express.

[7]  Y. Oh Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials , 1989 .

[8]  V. A. Brazhnyi,et al.  THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES , 2004 .

[9]  A. Trombettoni,et al.  Discrete nonlinear dynamics of weakly coupled Bose-Einstein condensates. , 2003, Chaos.

[10]  A. M. Kamchatnov,et al.  DYNAMICS OF BRIGHT MATTER WAVE SOLITONS IN A BOSE–EINSTEIN CONDENSATE , 2005 .

[11]  Gadi Fibich,et al.  Self-focusing on bounded domains , 2001 .

[12]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[13]  L. Torner,et al.  Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  G. Perelman Stability of solitary waves for nonlinear Schrödinger equation , 1996 .

[15]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[16]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[17]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  A. A. Kolokolov,et al.  Stationary solutions of the wave equation in a medium with nonlinearity saturation , 1973 .

[19]  G. Fibich,et al.  Instability of bound states of a nonlinear Schrodinger equation with a Dirac potential , 2007, 0707.2491.

[20]  Michael I. Weinstein,et al.  On the bound states of the nonlinear Schrödinger equation with a linear potential , 1988 .

[21]  Andreas Tünnermann,et al.  Discrete diffraction in two-dimensional arrays of coupled waveguides in silica. , 2004, Optics letters.

[22]  Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth , 2001, cond-mat/0102291.

[23]  D. Christodoulides,et al.  Discrete self-focusing in nonlinear arrays of coupled waveguides. , 1988, Optics letters.

[24]  Gang-Ding Peng,et al.  Multichannel switchable system for spatial solitons , 1999 .

[25]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[26]  F. Kh. Abdullaev,et al.  Dynamics of bright matter-wave solitons in a Bose?Einstein condensate with inhomogeneous scattering length , 2004 .

[27]  Demetrios N. Christodoulides,et al.  Lattice solitons in Bose-Einstein condensates , 2003 .

[28]  Rubenchik,et al.  Energy localization in nonlinear fiber arrays: Collapse-effect compressor. , 1995, Physical review letters.

[29]  G Fibich,et al.  Critical power for self-focusing in bulk media and in hollow waveguides. , 2000, Optics letters.

[30]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[31]  Reika Fukuizumi Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials , 2005, Advances in Differential Equations.

[32]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[33]  B. A. Malomed,et al.  Multidimensional solitons in periodic potentials , 2003 .

[34]  Weizhu Bao,et al.  Convergence rate of dimension reduction in Bose-Einstein condensates , 2007, Comput. Phys. Commun..

[35]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[36]  A. Tünnermann,et al.  Nonlinearity and disorder in fiber arrays. , 2004, Physical review letters.

[37]  Dmitry E Pelinovsky,et al.  Bifurcations and stability of gap solitons in periodic potentials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  M. Grillakis,et al.  Linearized instability for nonlinear Schr?odinger and Klein-Gordon equations , 1988 .

[39]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[40]  Wieslaw Krolikowski,et al.  Spatial solitons in optically induced gratings. , 2003, Optics letters.

[41]  J. Yang,et al.  Self-trapping of light in a two-dimensional photonic lattice , 2004 .

[42]  Gadi Fibich,et al.  Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure , 2006 .

[43]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[44]  One-dimensional bosons in three-dimensional traps. , 2003 .

[45]  Reika Fukuizumi,et al.  Stability of standing waves for nonlinear Schrödinger equations with potentials , 2003 .

[46]  Rafael Piestun,et al.  Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  TAI-CHIA LIN,et al.  Orbital Stability of Bound States of Semiclassical Nonlinear Schrödinger Equations with Critical Nonlinearity , 2008, SIAM J. Math. Anal..

[48]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[49]  Mordechai Segev,et al.  Two-dimensional optical lattice solitons. , 2003, Physical review letters.

[50]  Mordechai Segev,et al.  Spatial photonics in nonlinear waveguide arrays. , 2005, Optics express.

[51]  Tal Carmon,et al.  Observation of discrete solitons in optically induced real time waveguide arrays. , 2003, Physical review letters.

[52]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[53]  Y Silberberg,et al.  Strong spatiotemporal localization in a silica nonlinear waveguide array. , 2003, Physical review letters.

[54]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[55]  E. Lieb,et al.  One-dimensional bosons in three-dimensional traps. , 2003, Physical review letters.

[56]  Jianke Yang,et al.  Fundamental and vortex solitons in a two-dimensional optical lattice. , 2003, Optics letters.

[57]  Lederer,et al.  Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  P. Pacciani,et al.  Stationary localized modes of the quintic nonlinear schrödinger equation with a periodic potential , 2006 .