The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties

Aims. We investigate the relationships between three main optical galaxy observables (spectral properties, colours, and morphology), exploiting the data set provided by the COSMOS/zCOSMOS survey. The purpose of this paper is to define a simple galaxy classification cube, using a carefully selected sample of around 1000 galaxies. Methods. Using medium resolution spectra of the first 1k zCOSMOS-bright sample, optical photometry from the Subaru/COSMOS observations, and morphological measurements derived from ACS imaging, we analyze the properties of the galaxy population out to z~1. Applying three straightforward classification schemes (spectral, photometric, and morphological), we identify two main galaxy types, which appear to be linked to the bimodality of galaxy population. The three parametric classifications constitute the axes of a "classification cube". Results. A very good agreement exists between the classification from spectral data (quiescent/star-forming galaxies) and that based on colours (red/blue galaxies). The third parameter (morphology) is less well correlated with the first two: in fact a good correlation between the spectral classification and that based on morphological analysis (early-/late-type galaxies) is achieved only after partially complementing the morphological classification with additional colour information. Finally, analyzing the 3D-distribution of all galaxies in the sample, we find that about 85% of the galaxies show a fully concordant classification, being either quiescent, red, bulge-dominated galaxies (~20%) or star-forming, blue, disk-dominated galaxies (~65%). These results imply that the galaxy bimodality is a consistent behaviour both in morphology, colour and dominant stellar population, at least out to z~1.

G. Zamorani | S. J. Lilly | R. Pello | L. Guzzo | D. Maccagni | L. Pozzetti | C. Maier | P. Franzetti | A. Bongiorno | B. Garilli | M. Fumana | G. Coppa | O. Le Fevre | A. Cimatti | J.-F. Le Borgne | U. Abbas | R. Scaramella | C. Knobel | S. de la Torre | P. Capak | H. J. McCracken | C. M. Carollo | P. Cassata | A. Leauthaud | C. Porciani | A. Renzini | C. Scarlata | M. Scodeggio | F. Lamareille | D. Bottini | V. Le Brun | L. Tresse | S. Bardelli | A. Cappi | C. Marinoni | B. Meneux | D. Vergani | M. Mignoli | M. Bolzonella | O. Cucciati | P. Kampczyk | V. Mainieri | A. Iovino | T. Contini | B. Garilli | L. Guzzo | R. Scaramella | O. Fèvre | J. Kneib | G. Zamorani | M. Mignoli | M. Scodeggio | S. Bardelli | P. Franzetti | H. McCracken | R. Pelló | L. Pozzetti | E. Zucca | A. Leauthaud | A. Cimatti | J. Silverman | P. Capak | C. Carollo | S. Lilly | C. Knobel | L. Tasca | C. Scarlata | M. Bolzonella | U. Abbas | D. Bottini | A. Cappi | O. Cucciati | A. Iovino | V. Brun | D. Maccagni | D. Vergani | M. Fumana | C. Marinoni | C. Porciani | A. Bongiorno | A. Renzini | N. Scoville | G. Zamorani | T. Contini | L. Tresse | B. Meneux | M. Tanaka | P. Oesch | V. Mainieri | C. Halliday | C. Maier | K. Caputi | P. Kampczyk | K. Kovač | F. Lamareille | J. Borgne | E. Ricciardelli | G. Coppa | L. Ravel | E. P. Montero | P. Cassata | P. Memeo | N. Scoville | J. D. Silverman | E. Ricciardelli | P. Oesch | N. Scoville | J.-P. Kneib | L. Tasca | K. Caputi | C. Halliday | E. Zucca | L. de Ravel | Y. Peng | E. Perez Montero | M. Tanaka | P. Memeo | K. Kovac | S. D. Torre | Y. Peng | Y. Peng | J. L. Borgne | Masayuki Tanaka | U. Abbas

[1]  J. Bailin,et al.  Accepted for publication in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 INCLINATION-INDEPENDENT GALAXY CLASSIFICATION , 2022 .

[2]  S. Bergh Some Musings on Galaxy Morphology, Galactic Colors, and the Environments of Galaxies , 2007, 0706.3724.

[3]  D. Fisher,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 A CONNECTION BETWEEN BULGE PROPERTIES AND THE BIMODALITY OF GALAXIES , 2022 .

[4]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[5]  D. Thompson,et al.  The Redshift Evolution of Early-Type Galaxies in COSMOS: Do Massive Early-Type Galaxies Form by Dry Mergers? , 2007, astro-ph/0701746.

[6]  D. Thompson,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of X-Ray-Selected Sources , 2006, astro-ph/0612358.

[7]  S. Okamura,et al.  The Cosmic Evolution Survey (COSMOS): Subaru Observations of the HST Cosmos Field , 2006, astro-ph/0612295.

[8]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[9]  A. Mazure,et al.  The VIMOS-VLT deep survey Color bimodality and the mix of galaxy populations up to z ∼ 2 , 2006, astro-ph/0607075.

[10]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[11]  D. Thompson,et al.  COSMOS Morphological Classification with the Zurich Estimator of Structural Types (ZEST) and the Evolution Since z = 1 of the Luminosity Function of Early, Disk, and Irregular Galaxies , 2006, astro-ph/0611644.

[12]  C. Conselice The fundamental properties of galaxies and a new galaxy classification system , 2006, astro-ph/0610016.

[13]  J. Dunlop,et al.  The evolution of the near-infrared galaxy luminosity function and colour bimodality up to z = 2 from the UKIDSS Ultra Deep Survey Early Data Release , 2006, astro-ph/0609287.

[14]  D. Thompson,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006, astro-ph/0609044.

[15]  D. Thompson,et al.  The Evolution of the Number Density of Large Disk Galaxies in COSMOS , 2006, astro-ph/0609042.

[16]  J. Brinchmann,et al.  Spectrophotometric properties of galaxies at intermediate redshifts (z ~ 0.2-1.0). I. Sample descrip , 2005, astro-ph/0511134.

[17]  J. Newman,et al.  On the Origin of [O II] Emission in Red-Sequence and Poststarburst Galaxies , 2005, astro-ph/0512446.

[18]  Liverpool John Moores University,et al.  Bivariate galaxy luminosity functions in the Sloan Digital Sky Survey , 2005, astro-ph/0507547.

[19]  A. Fontana,et al.  The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population ⋆, ⋆⋆ , 2005, astro-ph/0504248.

[20]  G. Zamorani,et al.  The B-Band Luminosity Function of Red and Blue Galaxies up to z = 3.5 , 2004, astro-ph/0412044.

[21]  A. Mazure,et al.  The VVDS Data‐Reduction Pipeline: Introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface , 2004, astro-ph/0409248.

[22]  B. Garilli,et al.  The VIMOS-VLT deep survey - Evolution of the galaxy luminosity function up to z = 2 in first epoch data , 2004, astro-ph/0409134.

[23]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[24]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2004, astro-ph/0404275.

[25]  R. Nichol,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[26]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[27]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[28]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[29]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[30]  A. Cimatti,et al.  The K20 survey - III. Photometric and spectroscopic properties of the sample , 2002, astro-ph/0206168.

[31]  C. Manning The Search for Intergalactic Hydrogen Clouds in Voids , 2002, astro-ph/0203195.

[32]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[33]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[34]  P. Hewett,et al.  Emission Line Properties of the Large Bright Quasar Survey , 2000, astro-ph/0011373.

[35]  M. Bershady,et al.  Structural and Photometric Classification of Galaxies. I. Calibration Based on a Nearby Galaxy Sample , 2000, astro-ph/0002262.

[36]  H. Lin,et al.  Evolution of the Galaxy Population Based on Photometric Redshifts in the Hubble Deep Field , 1996, astro-ph/9610100.

[37]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[38]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[39]  O. Fèvre,et al.  The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection Effects , 1995, astro-ph/9507010.

[40]  R. Kennicutt A spectrophotometric atlas of galaxies , 1992 .

[41]  Matthew Colless,et al.  The LDSS deep redshift survey , 1990 .

[42]  A. G. Bruzual Spectral evolution of galaxies. 1. Early-type systems , 1983 .

[43]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[44]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[45]  E. Hubble THE NATURE OF THE NEBULAE , 1938 .

[46]  M. Humason No. 531. The apparent radial velocities of 100 extra-galactic nebulae. , 1936 .