An extension of regular supermagic graphs

A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we consider an extension of regular supermagic graphs and apply it to some constructions of supermagic graphs. Using the extension we prove that for any graph G there is a supermagic regular graph which contains an induced subgraph isomorphic to G.

[1]  Michael Doob,et al.  Characterizations of regular magic graphs , 1978, J. Comb. Theory, Ser. B.

[2]  R. H. Jeurissen,et al.  Magic Graphs, a Characterization , 1988, Eur. J. Comb..

[3]  W. Wallis,et al.  Magic Graphs , 2001 .

[4]  G. Ringel,et al.  PEARLS in GRAPH THEORY , 2007 .

[5]  Thomas R. Hagedorn,et al.  Magic rectangles revisited , 1999, Discret. Math..

[6]  Jaroslav Ivanco Magic and supermagic dense bipartite graphs , 2007, Discuss. Math. Graph Theory.

[7]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[8]  S. M. Hegde,et al.  On magic graphs , 2003, Australas. J Comb..

[9]  Jaroslav Ivančo,et al.  On supermagic regular graphs , 2000 .