Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI

It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance.

[1]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[2]  Lingchen Kong,et al.  RANK-MIN-ONE AND SPARSE TENSOR DECOMPOSITIONFOR SURVEILLANCE VIDEO , 2015 .

[3]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[4]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[5]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[6]  Yong Zhang,et al.  Sparse Approximation via Penalty Decomposition Methods , 2012, SIAM J. Optim..

[7]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[8]  Zhaosong Lu,et al.  Iterative hard thresholding methods for l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document} regulari , 2012, Mathematical Programming.

[9]  Hongkai Zhao,et al.  Robust principal component analysis-based four-dimensional computed tomography , 2011, Physics in medicine and biology.

[10]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[11]  Justin P. Haldar,et al.  Image Reconstruction From Highly Undersampled $( {\bf k}, {t})$-Space Data With Joint Partial Separability and Sparsity Constraints , 2012, IEEE Transactions on Medical Imaging.

[12]  Zhi-Pei Liang,et al.  Spatiotemporal Imaging with Partially Separable Functions , 2007, 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging.

[13]  Bhiksha Raj,et al.  Greedy sparsity-constrained optimization , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[14]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[15]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[16]  Zhi-Pei Liang,et al.  SPATIOTEMPORAL IMAGINGWITH PARTIALLY SEPARABLE FUNCTIONS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[17]  Naihua Xiu,et al.  On Solutions of Sparsity Constrained Optimization , 2015 .

[18]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.