The multivariate decomposition method for infinite-dimensional integration
暂无分享,去创建一个
Grzegorz W. Wasilkowski | Frances Y. Kuo | Dirk Nuyens | Ian H. Sloan | Leszek Plaskota | I. Sloan | G. Wasilkowski | L. Plaskota | F. Kuo | Dirk Nuyens
[1] Grzegorz W. Wasilkowski. Tractability of approximation of ∞-variate functions with bounded mixed partial derivatives , 2014, J. Complex..
[2] Michael Gnewuch,et al. On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..
[3] Dirk Nuyens. The construction of good lattice rules and polynomial lattice rules , 2014, Uniform Distribution and Quasi-Monte Carlo Methods.
[4] Grzegorz W. Wasilkowski. Average case tractability of approximating ∞-variate functions , 2014, Math. Comput..
[5] Michael Gnewuch,et al. Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition , 2014, J. Approx. Theory.
[6] Michael Gnewuch,et al. Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..
[7] Michael Gnewuch,et al. Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..
[8] Grzegorz W. Wasilkowski,et al. Efficient algorithms for multivariate and ∞-variate integration with exponential weight , 2013, Numerical Algorithms.
[9] Grzegorz W. Wasilkowski. On tractability of linear tensor product problems for ∞∞-variate classes of functions , 2013, J. Complex..
[10] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[11] Michael Gnewuch,et al. Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.
[12] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[13] Grzegorz W. Wasilkowski. Liberating the dimension for L2-approximation , 2012, J. Complex..
[14] Michael Gnewuch,et al. Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces , 2012, J. Complex..
[15] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[16] Jan Baldeaux,et al. Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.
[17] Grzegorz W. Wasilkowski,et al. Liberating the Dimension for Function Approximation and Integration , 2012 .
[18] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[19] Henryk Wozniakowski,et al. Liberating the dimension for function approximation: Standard information , 2011, J. Complex..
[20] I. Sloan,et al. QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.
[21] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[22] Henryk Wozniakowski,et al. Liberating the dimension for function approximation , 2011, J. Complex..
[23] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[24] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[25] Henryk Wozniakowski,et al. On decompositions of multivariate functions , 2009, Math. Comput..
[26] Steffen Dereich,et al. Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..
[27] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[28] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[29] H. Wozniakowski,et al. A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .
[30] H. Wozniakowski,et al. On tractability of path integration , 1996 .
[31] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[32] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.