The multivariate decomposition method for infinite-dimensional integration

We develop the generic "Multivariate Decomposition Method" (MDM) for weighted integration of functions of infinitely many variables $(x_1,x_2,x_3,...)$. The method works for functions that admit a decomposition $f=\sum_{\mathfrak{u}} f_{\mathfrak{u}}$, where $\mathfrak{u}$ runs over all finite subsets of positive integers, and for each $\mathfrak{u}=\{i_1,...,i_k\}$ the function $f_{\mathfrak{u}}$ depends only on $x_{i_1},...,x_{i_k}$. Moreover, we assume that $f_{\mathfrak{u}}$ belongs to a normed space $F_{\mathfrak{u}}$, and that a bound on $\|f_{\mathfrak{u}}\|_{F_{\mathfrak{u}}}$ is known. We also specialize MDM to $F_{\mathfrak{u}}$ being the $|\mathfrak{u}|$-tensor product of an anchored reproducing kernel Hilbert space, or a particular non-Hilbert space.

[1]  Grzegorz W. Wasilkowski Tractability of approximation of ∞-variate functions with bounded mixed partial derivatives , 2014, J. Complex..

[2]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[3]  Dirk Nuyens The construction of good lattice rules and polynomial lattice rules , 2014, Uniform Distribution and Quasi-Monte Carlo Methods.

[4]  Grzegorz W. Wasilkowski Average case tractability of approximating ∞-variate functions , 2014, Math. Comput..

[5]  Michael Gnewuch,et al.  Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition , 2014, J. Approx. Theory.

[6]  Michael Gnewuch,et al.  Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..

[7]  Michael Gnewuch,et al.  Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..

[8]  Grzegorz W. Wasilkowski,et al.  Efficient algorithms for multivariate and ∞-variate integration with exponential weight , 2013, Numerical Algorithms.

[9]  Grzegorz W. Wasilkowski On tractability of linear tensor product problems for ∞∞-variate classes of functions , 2013, J. Complex..

[10]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[11]  Michael Gnewuch,et al.  Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.

[12]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[13]  Grzegorz W. Wasilkowski Liberating the dimension for L2-approximation , 2012, J. Complex..

[14]  Michael Gnewuch,et al.  Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces , 2012, J. Complex..

[15]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[16]  Jan Baldeaux,et al.  Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.

[17]  Grzegorz W. Wasilkowski,et al.  Liberating the Dimension for Function Approximation and Integration , 2012 .

[18]  Grzegorz W. Wasilkowski,et al.  Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..

[19]  Henryk Wozniakowski,et al.  Liberating the dimension for function approximation: Standard information , 2011, J. Complex..

[20]  I. Sloan,et al.  QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.

[21]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[22]  Henryk Wozniakowski,et al.  Liberating the dimension for function approximation , 2011, J. Complex..

[23]  Henryk Wozniakowski,et al.  Liberating the dimension , 2010, J. Complex..

[24]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[25]  Henryk Wozniakowski,et al.  On decompositions of multivariate functions , 2009, Math. Comput..

[26]  Steffen Dereich,et al.  Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..

[27]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[28]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[29]  H. Wozniakowski,et al.  A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .

[30]  H. Wozniakowski,et al.  On tractability of path integration , 1996 .

[31]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[32]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.