Aptamers as recognition elements for label-free analytical devices

In spite of the impressive advances in aptasensing, the search for label-free devices for the detection of the aptamer-ligand interaction is still a challenge. This review highlights the advantages and the limitations of using label-free detection strategies and summarizes the state of the art in this field.

[1]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[2]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[3]  E Westhof,et al.  RNA as a drug target: chemical, modelling, and evolutionary tools. , 1998, Current opinion in biotechnology.

[4]  S. Gopinath Methods developed for SELEX , 2006, Analytical and bioanalytical chemistry.

[5]  Penmetcha K. R. Kumar,et al.  Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. , 2005, Analytical biochemistry.

[6]  D. P. Mack,et al.  Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector. , 1999, Analytical chemistry.

[7]  Chih-Ching Huang,et al.  Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. , 2007, Analytical chemistry.

[8]  Andrew D Ellington,et al.  In vitro selection of molecular beacons. , 2003, Nucleic acids research.

[9]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[10]  Ruedi Aebersold,et al.  Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. , 2004, Analytical chemistry.

[11]  Quan Cheng,et al.  Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips , 2007, Analytical and bioanalytical chemistry.

[12]  Hua-Zhong Yu,et al.  Aptamer-based biosensors for label-free voltammetric detection of lysozyme. , 2007, Analytical chemistry.

[13]  María Jesús Lobo-Castañón,et al.  Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. , 2007, Journal of the American Chemical Society.

[14]  Jung Ho Park,et al.  Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. , 2007, Biosensors & bioelectronics.

[15]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[16]  L. McGown,et al.  Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry. , 2004, Analytical chemistry.

[17]  Jun Wang,et al.  Aptamer-based ATP assay using a luminescent light switching complex. , 2005, Analytical chemistry.

[18]  Joseph Wang,et al.  Label-free bioelectronic detection of aptamer–protein interactions , 2005 .

[19]  Andrew D. Ellington,et al.  Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity , 2000 .

[20]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[21]  M. Yarus,et al.  Selection of an RNA domain that binds Zn2+. , 1995, RNA.

[22]  M. Famulok,et al.  A Love-wave biosensor using nucleic acids as ligands , 2004 .

[23]  Y. Shao,et al.  A chronocoulometric aptamer sensor for adenosine monophosphate. , 2007, Chemical communications.

[24]  Xiaobo Yu,et al.  Label-free electrochemical detection for aptamer-based array electrodes. , 2005, Analytical chemistry.

[25]  T. Fitzwater,et al.  A SELEX primer. , 1996, Methods in enzymology.

[26]  Yu-Fen Huang,et al.  Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. , 2007, Analytical chemistry.

[27]  P. He,et al.  An Aptamer-Based Protein Biosensor by Detecting the Amplified Impedance Signal , 2006 .

[28]  Hans Wolf,et al.  An aptamer-based quartz crystal protein biosensor. , 2002, Analytical chemistry.

[29]  Juewen Liu,et al.  A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures. , 2006, Angewandte Chemie.

[30]  Robert M. Corn,et al.  Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging , 2006, Nucleic acids research.

[31]  U. Schlecht,et al.  Comparison of antibody and aptamer receptors for the specific detection of thrombin with a nanometer gap-sized impedance biosensor. , 2006, Analytica chimica acta.

[32]  S. Manalis,et al.  Micromechanical detection of proteins using aptamer-based receptor molecules. , 2004, Analytical chemistry.

[33]  Milan N Stojanovic,et al.  Aptamer-based colorimetric probe for cocaine. , 2002, Journal of the American Chemical Society.

[34]  S. Venkatesan,et al.  Real-time Kinetics of HIV-1 Rev-Rev Response Element Interactions , 1999, The Journal of Biological Chemistry.

[35]  Joseph Wang,et al.  Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. , 2005, Chemical communications.

[36]  M. Mascini,et al.  Aptamer-based biosensors for the detection of HIV-1 Tat protein. , 2005, Bioelectrochemistry.

[37]  R. Stoltenburg,et al.  SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. , 2007, Biomolecular engineering.

[38]  A. Ellington,et al.  [14] In vitro selection of RNA aptamers , 2000 .

[39]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[40]  Ciara K O'Sullivan,et al.  Reusable impedimetric aptasensor. , 2005, Analytical chemistry.

[41]  Mario Leclerc,et al.  Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. , 2006, Analytical chemistry.

[42]  Eckhard Quandt,et al.  Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system , 2007 .

[43]  Andrew D. Ellington,et al.  Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. , 1997, Chemical reviews.

[44]  Xiaobo Yu,et al.  Label‐free detection methods for protein microarrays , 2006, Proteomics.

[45]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[46]  Chunli Bai,et al.  Signaling aptamer/protein binding by a molecular light switch complex. , 2004, Analytical chemistry.

[47]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[48]  E. Peyrin,et al.  A DNA aptamer as a new target-specific chiral selector for HPLC. , 2003, Journal of the American Chemical Society.

[49]  Sang Hyun Lee,et al.  Aptamers as functional nucleic acids:In vitro selection and biotechnological applications , 2003 .

[50]  Joshua LaBaer,et al.  Emerging tools for real‐time label‐free detection of interactions on functional protein microarrays , 2005, The FEBS journal.

[51]  S. Soper,et al.  Surface immobilization methods for aptamer diagnostic applications , 2008, Analytical and bioanalytical chemistry.

[52]  U. Schlecht,et al.  Detection of Rev peptides with impedance-sensors--comparison of device-geometries. , 2007, Biosensors & bioelectronics.

[53]  Itamar Willner,et al.  Label-free and reagentless aptamer-based sensors for small molecules. , 2006, Journal of the American Chemical Society.

[54]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.