A Novel Variable Structure Multi-Model Tracking Algorithm Based on Error-Ambiguity Decomposition

Model set adaptation (MSA) plays a key role in the variable structure estimation approach (VSMM). In this paper, we adopt the error-ambiguity decomposition (EAD) principle into the VSMM framework and derive the optimal EAD-MSA criteria. By proposing some approximation methods, an EAD variable structure interactive multiple model algorithm (EAD-VSIMM) is constructed. We test the EAD-VSIMM algorithm in a maneuvering target tracking scenario and the results demonstrate that, compared to two benchmark MM algorithms, the proposed EAD-VSIMM algorithm can achieve more robust and accurate estimation results.

[1]  Jesús García,et al.  Model-based trajectory reconstruction with IMM smoothing and segmentation , 2015, Inf. Fusion.

[2]  Anke Xue,et al.  Geometrical entropy approach for variable structure multiple-model estimation , 2015 .

[3]  Mihaela van der Schaar,et al.  Adaptive Ensemble Learning With Confidence Bounds , 2017, IEEE Transactions on Signal Processing.

[4]  X. R. Li,et al.  Online Bayesian estimation of transition probabilities for Markovian jump systems , 2004, IEEE Transactions on Signal Processing.

[5]  Y. Hayashi,et al.  Fault Detection of Railway Vehicles Using Multiple Model Approach , 2006, 2006 SICE-ICASE International Joint Conference.

[6]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Anke Xue,et al.  Feedback structure based entropy approach for multiple-model estimation , 2013 .

[8]  X. Rong Li,et al.  Hybrid grid multiple-model estimation with application to maneuvering target tracking , 2010, 2010 13th International Conference on Information Fusion.

[9]  Myoungho Sunwoo,et al.  Interacting Multiple Model Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning , 2012, IEEE Transactions on Intelligent Transportation Systems.

[10]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[11]  Ting Yuan,et al.  A Multiple IMM Estimation Approach with Unbiased Mixing for Thrusting Projectiles , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Youmin Zhang,et al.  Multiple-model estimation with variable structure: model-group switching algorithm , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[13]  Y. Bar-Shalom,et al.  Multiple-model estimation with variable structure , 1996, IEEE Trans. Autom. Control..

[14]  Tan-Jan Ho,et al.  A switched IMM-Extended Viterbi estimator-based algorithm for maneuvering target tracking , 2011, Autom..

[15]  Zhongliang Jing,et al.  Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter , 2017, Signal Process..

[16]  Youmin Zhang,et al.  Multiple-model estimation with variable structure. V. Likely-model set algorithm , 2000, IEEE Trans. Aerosp. Electron. Syst..

[17]  X. Rong Li,et al.  Equivalent-Model Augmentation for Variable-Structure Multiple-Model Estimation , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[18]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaptation , 1970 .

[19]  X. Rong Li,et al.  Multiple-model estimation with variable structure- part VI: expected-mode augmentation , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[20]  X. Rong Li,et al.  Multiple-Model Estimation with Variable Structure—Part II: Model-Set Adaptation , 2000 .

[21]  Vijay Vaidehi,et al.  Target tracking using Interactive Multiple Model for Wireless Sensor Network , 2016, Inf. Fusion.

[22]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .