Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–1883

The paper “Note sur une relation entre les intégrales définies des produits des fonctions” by C. Andréief is an often cited paper in random matrix theory, due to it containing what is now referred to as Andréief’s integration formula. Nearly all citing works state the publication year as 1883. However, the journal containing the paper, Mémories de la Societé des Sciences physiques et naturelles de Bordeaux, issue 3 volume 2 actually appeared in 1886. In addition to clarifying this point, some historical information relating to C. Andréief (better known as K. A. Andreev) and the lead up to this work is given, as is a review of some of the context of Andréief’s integration formula.

[1]  Harold Cohen,et al.  DETERMINANTS AND MATRICES , 2019, Essentials of Mathematical Methods in Science and Engineering.

[2]  H. Rosengren Determinantal elliptic Selberg integrals , 2018, 1803.05186.

[3]  Pierpaolo Vivo,et al.  Introduction to Random Matrices: Theory and Practice , 2017, 1712.07903.

[4]  J. R. Ipsen,et al.  Matrix Product Ensembles of Hermite Type and the Hyperbolic Harish-Chandra–Itzykson–Zuber Integral , 2017, 1702.07100.

[5]  J. Baik,et al.  Combinatorics and Random Matrix Theory , 2016 .

[6]  Teodoro Collin RANDOM MATRIX THEORY , 2016 .

[7]  P. Forrester,et al.  Muttalib--Borodin ensembles in random matrix theory --- realisations and correlation functions , 2015, 1502.07147.

[8]  Dries Stivigny,et al.  Singular Value Statistics of Matrix Products with Truncated Unitary Matrices , 2015, 1501.03910.

[9]  D. Cheliotis Triangular random matrices and biorthogonal ensembles , 2014, 1404.4730.

[10]  Peter J. Forrester,et al.  Eigenvalue statistics for product complex Wishart matrices , 2014, 1401.2572.

[11]  Lun Zhang,et al.  Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits , 2013, 1308.1003.

[12]  Gernot Akemann,et al.  Products of rectangular random matrices: singular values and progressive scattering. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Baik,et al.  Discrete Toeplitz/Hankel Determinants and the Width of Nonintersecting Processes , 2012, 1212.4467.

[14]  J. Baik,et al.  On a relationship between high rank cases and rank one cases of Hermitian random matrix models with external source , 2012, 1207.0389.

[15]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[16]  P. Forrester Log-Gases and Random Matrices , 2010 .

[17]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[18]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[19]  Gordon Blower Random Matrices: High Dimensional Phenomena , 2009 .

[20]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[21]  Convolution symmetries of integrable hierarchies, matrix models and \tau-functions , 2009, 0901.0323.

[22]  J. Cunningham History , 2007, The Journal of Hellenic Studies.

[23]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[24]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[25]  J. Baik,et al.  Algebraic aspects of increasing subsequences , 1999, math/9905083.

[26]  Alexei Borodin Biorthogonal ensembles , 1998 .

[27]  Masato Wakayama,et al.  Applications of minor-summation formula I. Littlewood's formulas , 1996 .

[28]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[29]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[30]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[31]  T. Muir The Theory of Determinants in the Historical Order of Development , 1912 .