Kinetic analysis of the RNAi enzyme complex

[1]  L. Excoffier,et al.  Modern Humans Did Not Admix with Neanderthals during Their Range Expansion into Europe , 2004, PLoS biology.

[2]  Phillip D Zamore,et al.  The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease , 2004, Current Biology.

[3]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[4]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[5]  T. Du,et al.  RISC Assembly Defects in the Drosophila RNAi Mutant armitage , 2004, Cell.

[6]  A. Reynolds,et al.  Rational siRNA design for RNA interference , 2004, Nature Biotechnology.

[7]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[8]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[9]  Phillip D Zamore,et al.  Sequence-Specific Inhibition of Small RNA Function , 2004, PLoS biology.

[10]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[11]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[12]  N. Socci,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[13]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[14]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[15]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[16]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[17]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[18]  M. Eisen,et al.  Why PLoS Became a Publisher , 2003, PLoS biology.

[19]  T. Rana,et al.  siRNA function in RNAi: a chemical modification analysis. , 2003, RNA.

[20]  P. Zamore,et al.  Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis , 2003, Aging cell.

[21]  Guiliang Tang,et al.  In vitro analysis of RNA interference in Drosophila melanogaster. , 2003, Methods.

[22]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[23]  M. Amarzguioui,et al.  Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. , 2003, Nucleic acids research.

[24]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[25]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[26]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[27]  M. Amarzguioui,et al.  Tolerance for mutations and chemical modifications in a siRNA. , 2003, Nucleic acids research.

[28]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[29]  T. Rana,et al.  RNAi in human cells: basic structural and functional features of small interfering RNA. , 2002, Molecular cell.

[30]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[31]  W. Filipowicz Faculty Opinions recommendation of A microRNA in a multiple-turnover RNAi enzyme complex. , 2002 .

[32]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[33]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[34]  P. Zamore,et al.  ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway , 2001, Cell.

[35]  S. Crooke,et al.  Investigating the Structure of Human RNase H1 by Site-directed Mutagenesis* , 2001, The Journal of Biological Chemistry.

[36]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[37]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[38]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[39]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[40]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[41]  S. Crooke,et al.  Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids. , 1997, Biochemistry.

[42]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[43]  Will French Function I , 1937 .

[44]  B. Heinz,et al.  Small interfering RNA molecules as potential anti-human rhinovirus agents: in vitro potency, specificity, and mechanism. , 2004, Antiviral research.

[45]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[46]  Gregory J. Hannon,et al.  Small RNAs, big biology: biochemical studies of RNA interference , 2003 .

[47]  M. A. Rector,et al.  References and Notes Materials and Methods Som Text Fig. S1 Table S1 References a Microrna in a Multiple- Turnover Rnai Enzyme Complex , 2022 .