Autonomous Rock Outcrop Segmentation as a Tool for Science and Exploration Tasks in Surface Operations

As planetary exploration missions become increasingly complex and capable, the motivation grows for improved autonomous science. New capabilities for onboard science data analysis may relieve radio-link data limits and provide greater throughput of scientific information. For surface missions, geology remains an essential focus, and the investigation of in-place, exposed geological materials provides the greatest scientific insight and context for the formation and history of geological environments. The present work develops techniques for autonomous segmentation of images of rock outcrops. Recognition of the relationships between different geological units is the first step in mapping and interpreting a geological setting, and is important even in the absence of compositional information. The goal is to allow a computer to process an image of a rock outcrop and produce a map of visually-distinguishable geological units. Several scenarios are described in which this tool could enable more efficient and effective science operations on planetary surfaces, by guiding instrument use, target selection, and other decisions in the exploration process.

[1]  Hamid Hemmati,et al.  Deep space optical communications , 2006 .

[2]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[3]  P. Gierasch,et al.  Dynamics of the atmospheres of the outer planets , 1992 .

[4]  Jean-Pierre Lebreton,et al.  The Cassini/Huygens Mission to the Saturnian System , 1999 .

[5]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[6]  Hongwei Ma,et al.  Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory , 2012 .

[7]  R. Reinhard The Giotto encounter with comet Halley , 1986 .

[8]  John Bohannon Scientific publishing. Google Scholar wins raves--but can it be trusted? , 2014, Science.

[9]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[10]  R. Gellert,et al.  Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer , 2012 .

[12]  Klaus-Juergen Schulz ESA's Approach to Stations and Communication Networks Interoperability , 2002 .

[13]  J. Hoffman,et al.  Phoenix mars mission—The thermal evolved gas analyzer , 2008, Journal of the American Society for Mass Spectrometry.

[14]  Durgadas S. Bagri,et al.  Proposed Array-Based Deep Space Network for NASA , 2007, Proceedings of the IEEE.

[15]  R. Trautner,et al.  The Mars Express mission: an overview , 2004 .

[16]  D. Ming,et al.  The Sample Analysis at Mars Investigation and Instrument Suite , 2012 .

[17]  Bhavani Shankar,et al.  A Mission Control Architecture for robotic lunar sample return as field tested in an analogue deployment to the sudbury impact structure , 2012 .

[18]  M. Warhaut,et al.  ESA's 35-meter Deep Space Antennas at New Norcia/Western Australia and Cebreros/Spain , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[19]  S. Shambayati,et al.  Deep-space optical communications , 2011, 2011 International Conference on Space Optical Systems and Applications (ICSOS).

[20]  M. Bozzi,et al.  Future Architectures for European Space Agency Deep-Space Ground Stations [Antenna Applications Corner] , 2012, IEEE Antennas and Propagation Magazine.

[21]  T. Economou Chemical analyses of martian soil and rocks obtained by the Pathfinder Alpha Proton X-ray spectrometer , 2001 .

[22]  Reg G. Willson,et al.  Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation , 2012 .

[23]  M. Sims,et al.  The Athena Mars Rover Science Payload , 1998 .

[24]  Hamid Hemmati Deep Space Optical Communications: Hemmati/Deep , 2006 .

[25]  Piermario Besso,et al.  The European Space Agency's Deep-Space Antennas , 2007, Proceedings of the IEEE.

[26]  Joseph I. Statman,et al.  Deep Space Network Array - Update , 2006 .

[27]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[28]  Luther W. Beegle,et al.  Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System , 2012 .

[29]  R. Kramm,et al.  Surface features on the nucleus of comet Halley , 1988, Nature.

[30]  K. McIsaac,et al.  Autonomous Mapping of Outcrops Using Multiclass Linear Discriminant Analysis , 2014 .

[31]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[32]  R. V. Morris,et al.  Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[33]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[34]  B. Jai,et al.  The Mars reconnaissance orbiter mission , 2005, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[35]  William V. Boynton,et al.  Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results , 2010 .

[36]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .

[37]  H. Klein The Viking biological experiments on Mars , 1978 .

[38]  Tara A. Estlin,et al.  AEGIS Automated Science Targeting for the MER Opportunity Rover , 2012, TIST.

[39]  John H. Maindonald,et al.  Modern Multivariate Statistical Techniques: Regression, Classification and Manifold Learning , 2009 .

[40]  Bryan S. Robinson,et al.  The lunar laser communications demonstration , 2011, 2011 International Conference on Space Optical Systems and Applications (ICSOS).