Topological Data Analysis of Biological Aggregation Models

We apply tools from topological data analysis to two mathematical models inspired by biological aggregations such as bird flocks, fish schools, and insect swarms. Our data consists of numerical simulation output from the models of Vicsek and D'Orsogna. These models are dynamical systems describing the movement of agents who interact via alignment, attraction, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space. We analyze the topological structure of these point clouds, interpreting the persistent homology by calculating the first few Betti numbers. These Betti numbers count connected components, topological circles, and trapped volumes present in the data. To interpret our results, we introduce a visualization that displays Betti numbers over simulation time and topological persistence scale. We compare our topological results to order parameters typically used to quantify the global behavior of aggregations, such as polarization and angular momentum. The topological calculations reveal events and structure not captured by the order parameters.

[1]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[2]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[3]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[4]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  R. Ho Algebraic Topology , 2022 .

[6]  M A Lewis,et al.  Complex spatial group patterns result from different animal communication mechanisms , 2007, Proceedings of the National Academy of Sciences.

[7]  Iain D. Couzin,et al.  Self‐Organization in Biological Systems.Princeton Studies in Complexity. ByScott Camazine,, Jean‐Louis Deneubourg,, Nigel R Franks,, James Sneyd,, Guy Theraulaz, and, Eric Bonabeau; original line drawings by, William Ristineand, Mary Ellen Didion; StarLogo programming by, William Thies. Princeton (N , 2002 .

[8]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[9]  Leonidas J. Guibas,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm250 Structural bioinformatics Persistent voids: a new structural metric for membrane fusion , 2022 .

[10]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[11]  J. Hutchinson Animal groups in three dimensions , 1999 .

[12]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[13]  A. Bernoff,et al.  Social Aggregation in Pea Aphids: Experiment and Random Walk Modeling , 2013, PloS one.

[14]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[15]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[16]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[17]  Hoon Hong,et al.  Mathematical Software – ICMS 2014 , 2014, Lecture Notes in Computer Science.

[18]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[19]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[20]  M. Lewis,et al.  A unifying framework for quantifying the nature of animal interactions , 2014, Journal of The Royal Society Interface.

[21]  D. Ringach,et al.  Topological analysis of population activity in visual cortex. , 2008, Journal of vision.

[22]  Ulrich Bauer,et al.  Phat - Persistent Homology Algorithms Toolbox , 2014, J. Symb. Comput..

[23]  Leah Edelstein-Keshet,et al.  Inferring individual rules from collective behavior , 2010, Proceedings of the National Academy of Sciences.

[24]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[25]  Sepideh Bazazi,et al.  Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments , 2012, PLoS Comput. Biol..

[26]  I. Giardina Collective Animal Behavior David J.T. Sumpter Collective Animal Behavior , 2011, Animal Behaviour.

[27]  Iain D. Couzin,et al.  Collective States, Multistability and Transitional Behavior in Schooling Fish , 2013, PLoS Comput. Biol..

[28]  Leah Edelstein-Keshet,et al.  The Dynamics of Animal Grouping , 2001 .

[29]  坂上 貴之 書評 Computational Homology , 2005 .

[30]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[31]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[32]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[33]  Andrew J. Bernoff,et al.  Nonlocal Aggregation Models: A Primer of Swarm Equilibria , 2013, SIAM Rev..

[34]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[35]  Jean-Luc Thiffeault,et al.  Detecting coherent structures using braids , 2011, 1106.2231.

[36]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[37]  Kevin M. Passino,et al.  Biomimicry for Optimization, Control and Automation , 2004, IEEE Transactions on Automatic Control.

[38]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[39]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[40]  Andrew J. Bernoff,et al.  Nonlocal aggregation equations: A primer of swarm equilibria , 2013 .

[41]  C. Breder Equations Descriptive of Fish Schools and Other Animal Aggregations , 1954 .

[42]  Saad Ali Measuring Flow Complexity in Videos , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[44]  Xiaojin Zhu,et al.  Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing , 2013, IJCAI.

[45]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[46]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[47]  M. Aldana,et al.  New tools for characterizing swarming systems: A comparison of minimal models , 2008 .

[48]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[49]  Chao Chen,et al.  Algebraic topology for computer vision , 2009 .

[50]  Andrew J. Bernoff,et al.  A Primer of Swarm Equilibria , 2010, SIAM J. Appl. Dyn. Syst..