La quantification vectorielle des signaux: approche algébrique

AnalyseLa quantification vectorielle sphérique (qvs)consiste à quantifier séparément la norme d’un vecteur d’une part et son orientationd’autre part. La mise en œuvre d’un tel quantificateur nécessite la spécification d’un ensemble de vecteurs normés (points sur la sphère unité) qui sont les valeurs arrondies possibles pour l’orientation du vecteur. Une façon efficace de construire un quantificateur consiste à considérer le sousensemble sphérique d’un réseau régulier de points. En particulier un algorithme très rapide est donné pour laqvsutilisant les points du réseau de Gosset en 8 dimensions. Un second algorithme (optimal également) est donné pour le réseau de Leech en 24 dimensions. Les performances de tels quantificateurs pour le bruit blanc gaussien sont comparées aux limites prédites par la théorie de l’information. Enfin l’application de ces techniques au codage du résidu de parole est discutée.AbstractSpherical vector quantization (svq)consists of quantizing separately on the one hand the norm of a vector and, on the other hand, its orientation.Implementing such quantizer requires a set of normalized vectors (points on the unit sphere) which are the possible rounded-off values for the vector’s orientation. A clever way to design such a quantizer consists of taking a spherical subset from a regular point lattice. In particular a fast algorithm is given for the Gosset lattice in 8 dimensions. A second algorithm, equally optimal, is given for the Leech lattice in 24 dimensions. The performances of such quantizers for white Gaussian noise is compared to information theory limits. Finally, the application of these techniques for encoding speech residual is discussed.

[1]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[2]  D. Slepian Permutation Modulation , 1965, Encyclopedia of Wireless Networks.

[3]  J. Leech Notes on Sphere Packings , 1967, Canadian Journal of Mathematics.

[4]  John H. Conway,et al.  A characterisation of Leech's lattice , 1969 .

[5]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[6]  M. Paez,et al.  Minimum Mean-Squared-Error Quantization in Speech PCM and DPCM Systems , 1972, IEEE Trans. Commun..

[7]  J. Pieter M. Schalkwijk,et al.  An algorithm for source coding , 1972, IEEE Trans. Inf. Theory.

[8]  Toby Berger,et al.  Permutation codes for sources , 1972, IEEE Trans. Inf. Theory.

[9]  Stuart L. Meyer,et al.  Data analysis for scientists and engineers , 1975 .

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[12]  David Malah,et al.  Time-domain algorithms for harmonic bandwidth reduction and time scaling of speech signals , 1979 .

[13]  N. J. A. Sloane,et al.  Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.

[14]  Harald Katterfeldt A DFT-based residual-excited linear predictive coder (RELP) for 4.8 and 9.6kb/s , 1981, ICASSP.

[15]  N. J. A. Sloane,et al.  Fast quantizing and decoding and algorithms for lattice quantizers and codes , 1982, IEEE Trans. Inf. Theory.

[16]  Bishnu S. Atal,et al.  A new model of LPC excitation for producing natural-sounding speech at low bit rates , 1982, ICASSP.

[17]  N. J. A. Sloane,et al.  Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.

[18]  R. Gray,et al.  Vector quantization of speech and speech-like waveforms , 1982 .

[19]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[20]  Allen Gersho,et al.  On the structure of vector quantizers , 1982, IEEE Trans. Inf. Theory.

[21]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[22]  V. Cuperman,et al.  Vector quantization: A pattern-matching technique for speech coding , 1983, IEEE Communications Magazine.

[23]  La quantification vectorielle et son application au codage de la parole , 1983 .

[24]  G. Battail Décodage pondéré optimal des codes linéaires en blocs , 1983 .

[25]  Jacques Wolfmann A permutation decoding of the (24, 12, 8) Golay code , 1983, IEEE Trans. Inf. Theory.

[26]  N. J. A. Sloane,et al.  A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.

[27]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[28]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[29]  N. Sloane,et al.  On the Voronoi Regions of Certain Lattices , 1984 .

[30]  P. Mabilleau,et al.  Generalization of the multipulse coding for low bit rate coding purposes: The generalized decimation , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.