Clique-width of full bubble model graphs

Bubble models are 2-dimensional representations of proper interval graphs. We consider proper interval graphs that have bubble models of specific properties. We characterise the maximal such proper interval graphs of bounded clique-width and of bounded linear clique-width and the minimal such proper interval graphs whose clique-width and linear clique-width exceed the bounds. As a consequence, we can efficiently compute the clique-width and linear clique-width of the considered graphs.

[1]  Udi Rotics,et al.  Exploiting Restricted Linear Structure to Cope with the Hardness of Clique-Width , 2010, TAMC.

[2]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[3]  Vadim V. Lozin,et al.  Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.

[4]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[5]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[6]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[7]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[8]  Frank Gurski,et al.  Linear layouts measuring neighbourhoods in graphs , 2006, Discret. Math..

[9]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[10]  Bruno Courcelle,et al.  A characterisation of clique-width through nested partitions , 2015, Discret. Appl. Math..

[11]  Pinar Heggernes,et al.  Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs , 2012, Discret. Appl. Math..

[12]  Dieter Rautenbach,et al.  The relative clique-width of a graph , 2007, J. Comb. Theory, Ser. B.

[13]  Udi Rotics,et al.  Clique-width of path powers , 2016, Discret. Appl. Math..

[14]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[15]  Udi Rotics,et al.  Minimal forbidden induced subgraphs of graphs of bounded clique-width and bounded linear clique-width , 2013, ArXiv.

[16]  Daniel Meister,et al.  Clique-width with an inactive label , 2014, Discret. Math..

[17]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[18]  Pinar Heggernes,et al.  A new representation of proper interval graphs with an application to clique-width , 2009, Electron. Notes Discret. Math..

[19]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2011, Theor. Comput. Sci..

[20]  Frank Gurski,et al.  Characterizations for co-graphs defined by restricted NLC-width or clique-width operations , 2006, Discret. Math..

[21]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[22]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[23]  Udi Rotics,et al.  Polynomial-time recognition of clique-width ≤3 graphs , 2012, Discret. Appl. Math..

[24]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..