View-dependent peel-away visualization for volumetric data

In this paper a novel approach for peel-away visualizations is presented. Newly developed algorithm extends existing illustrative deformation approaches which are based on deformation templates and adds new component of view-dependency of the peel region. The view-dependent property guarantees the viewer unobstructed view on inspected feature of interest. This is realized by rotating deformation template so that the peeled-away segment always faces away from the viewer. Furthermore the new algorithm computes the underlying peel template on-the-fly, which allows animating the level of peeling. When structures of interest are tagged with segmentation masks, an automatic scaling and positioning of peel deformation templates allows guided navigation and clear view at structures in focus as well as feature-aligned peeling. The overall performance allows smooth interaction with reasonably sized datasets and peel templates as the implementation maximizes utilization of computation power of modern GPUs.

[1]  A. Hyatt Mayor Artists and Anatomists , 1984 .

[2]  Stefan Bruckner,et al.  Illustrative Context-Preserving Volume Rendering , 2005, EuroVis.

[3]  Stefan Bruckner,et al.  Exploded Views for Volume Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[4]  Stefan Bruckner,et al.  Style Transfer Functions for Illustrative Volume Rendering , 2007, Comput. Graph. Forum.

[5]  Thomas Ertl,et al.  Interactive Cutaway Illustrations , 2003, Comput. Graph. Forum.

[6]  Andreas Kolb,et al.  Opacity Peeling for Direct Volume Rendering , 2006, Comput. Graph. Forum.

[7]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[8]  Roni Yagel,et al.  Space Deformation using Ray Deflectors , 1995, Rendering Techniques.

[9]  Fernando Bello,et al.  Online Multiresolution Volumetric Mass Spring Model for Real Time Soft Tissue Deformation , 2002, MICCAI.

[10]  Arie E. Kaufman,et al.  Real‐time Biomechanically‐based Muscle Volume Deformation using FEM , 1998, Comput. Graph. Forum.

[11]  Eugene Fiume,et al.  Wires: a geometric deformation technique , 1998, SIGGRAPH.

[12]  Stefan Gumhold,et al.  Multiresolution rendering with displacement mapping , 1999, Workshop on Graphics Hardware.

[13]  Thomas Ertl,et al.  Transparency in Interactive Technical Illustrations , 2002, Comput. Graph. Forum.

[14]  Andrew S. Winter,et al.  Spatial transfer functions: a unified approach to specifying deformation in volume modeling and animation , 2003, VG.

[15]  Markus Hadwiger,et al.  Interactive deformation and visualization of large volume datasets , 2007, GRAPP.

[16]  Stefan Bruckner,et al.  TECHNICAL REPORT VolumeShop: An Interactive System for Direct Volume , 2022 .

[17]  S. Walton,et al.  Interacting with Volume Data: Deformations using Forward Projection , 2007, International Conference on Medical Information Visualisation - BioMedical Visualisation (MediVis 2007).

[18]  Bernhard Preim,et al.  Enhancing Slice-based Visualizations of Medical Volume Data , 2006, EuroVis.

[19]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[20]  Ivan Viola,et al.  Illustrative visualization: new technology or useless tautology? , 2008, COMG.

[21]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[22]  Min Chen,et al.  Volume Splitting and Its Applications , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Deborah Silver,et al.  Illustrative Deformation for Data Exploration , 2007, IEEE Transactions on Visualization and Computer Graphics.

[24]  Michael C. Doggett,et al.  Adaptive view dependent tessellation of displacement maps , 2000, Workshop on Graphics Hardware.

[25]  Ivan Viola,et al.  Importance-driven volume rendering , 2004, IEEE Visualization 2004.

[26]  Min Chen,et al.  Discontinuous Displacement Mapping for Volume Graphics , 2006, VG@SIGGRAPH.

[27]  Ravin Balakrishnan,et al.  Using deformations for browsing volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[28]  Joseph Varon,et al.  The Resuscitation Greats: Andreas Vesalius, the concept of an artificial airway. , 2003, Resuscitation.

[29]  Dariu Gavrila,et al.  A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[31]  Jan Hardenbergh,et al.  Emissive clipping planes for volume rendering , 2003, SIGGRAPH '03.

[32]  Eduard Gröller,et al.  Fast Visualization of Object Contours by Non‐Photorealistic Volume Rendering , 2001, Comput. Graph. Forum.

[33]  Thomas Ertl,et al.  Volume clipping via per-fragment operations in texture-based volume visualization , 2002, IEEE Visualization, 2002. VIS 2002..

[34]  Klaus Mueller,et al.  The magic volume lens: an interactive focus+context technique for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[35]  Eduard Gröller,et al.  Nonlinear virtual colon unfolding , 2001, Proceedings Visualization, 2001. VIS '01..

[36]  Mark W. Jones,et al.  Volume Wires: A Framework for Empirical Nonlinear Deformation of Volumetric Datasets , 2006, J. WSCG.

[37]  Deborah Silver,et al.  Spatial and temporal splitting of scalar fields in volume graphics , 2004 .