Functional Classification with Margin Conditions
暂无分享,去创建一个
[1] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[2] A. Tsybakov,et al. Fast learning rates for plug-in classifiers , 2005, 0708.2321.
[3] V. Vapnik. Estimation of Dependences Based on Empirical Data , 2006 .
[4] R. Tibshirani,et al. Penalized Discriminant Analysis , 1995 .
[5] Peter Hall,et al. A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.
[6] Yuhong Yang. Can the Strengths of AIC and BIC Be Shared , 2005 .
[7] L. Devroye,et al. An equivalence theorem for L1 convergence of the kernel regression estimate , 1989 .
[8] Sanjeev R. Kulkarni,et al. Rates of convergence of nearest neighbor estimation under arbitrary sampling , 1995, IEEE Trans. Inf. Theory.
[9] Henry W. Altland,et al. Applied Functional Data Analysis , 2003, Technometrics.
[10] P. Massart,et al. Risk bounds for statistical learning , 2007, math/0702683.
[11] Robert Tibshirani,et al. Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[12] Christine Tuleau. SELECTION DE VARIABLES POUR LA DISCRIMINATION EN GRANDE DIMENSION ET CLASSIFICATION DE DONNEES FONCTIONNELLES , 2005 .
[13] 中澤 真,et al. Devroye, L., Gyorfi, L. and Lugosi, G. : A Probabilistic Theory of Pattern Recognition, Springer (1996). , 1997 .
[14] Florentina Bunea,et al. Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.
[15] Gábor Lugosi,et al. Pattern Classification and Learning Theory , 2002 .
[16] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[17] F. Rossi,et al. Classification in Hilbert Spaces with Support Vector Machines , 2005 .
[18] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[19] Nicolas W. Hengartner,et al. Bandwidth selection for local linear regression smoothers , 2002 .
[20] Luc Devroye,et al. Lower bounds in pattern recognition and learning , 1995, Pattern Recognit..
[21] Michael I. Jordan,et al. Convexity, Classification, and Risk Bounds , 2006 .
[22] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[23] L. Györfi. Principles of nonparametric learning , 2002 .
[24] B. Silverman,et al. Functional Data Analysis , 1997 .
[25] L. Rouviere. Functional Learning with Wavelets , 2005 .
[26] P. Massart,et al. Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .
[27] Gérard Biau,et al. On the Kernel Rule for Function Classification , 2006 .
[28] S. Boucheron,et al. Theory of classification : a survey of some recent advances , 2005 .
[29] A. Davison,et al. Report of the Editors—2001 , 2002 .
[30] L. Devroye. Nonparametric Discrimination and Density Estimation. , 1976 .
[31] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[32] Frédéric Ferraty,et al. Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..
[33] Arnaud Guyader,et al. Nearest neighbor classification in infinite dimension , 2006 .
[34] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[35] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[36] J. O. Ramsay,et al. Functional Data Analysis (Springer Series in Statistics) , 1997 .
[37] David Haussler,et al. Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.