Dimensional Analysis of α -Fractal Functions

. We provide a rigorous study on dimensions of fractal interpolation functions defined on a closed and bounded interval of R which are associated to a continuous function with respect to a base function, scaling functions and a partition of the interval. In particular, we calculate an exact estimation of box dimension of α -fractal functions under suitable hypotheses on the iterated function system.

[1]  M. Navascués,et al.  Kantorovich-Bernstein α-fractal function in 𝓛P spaces , 2020, Quaestiones Mathematicae.

[2]  P. Viswanathan,et al.  A Fractal Operator Associated with Bivariate Fractal Interpolation Functions on Rectangular Grids , 2020 .

[3]  N. Vijender Approximation by Hidden Variable Fractal Functions: A Sequential Approach , 2019, Results in Mathematics.

[4]  P. Viswanathan,et al.  A REVISIT TO α-FRACTAL FUNCTION AND BOX DIMENSION OF ITS GRAPH , 2019, Fractals.

[5]  N. Vijender Bernstein Fractal Trigonometric Approximation , 2019 .

[6]  Md. Nasim Akhtar,et al.  BOX DIMENSIONS OF α-FRACTAL FUNCTIONS , 2016 .

[7]  Hong-Yong Wang,et al.  Fractal interpolation functions with variable parameters and their analytical properties , 2013, J. Approx. Theory.

[8]  Peter Massopust,et al.  Bilinear fractal interpolation and box dimension , 2012, J. Approx. Theory.

[9]  Y. S. Liang Box dimensions of Riemann–Liouville fractional integrals of continuous functions of bounded variation , 2010 .

[10]  P. Massopust Interpolation and Approximation with Splines and Fractals , 2010 .

[11]  Kui Yao,et al.  Box dimension and fractional integral of linear fractal interpolation functions , 2009, J. Approx. Theory.

[12]  M. Navascués Fractal Polynomial Interpolation , 2005 .

[13]  Y. Peres,et al.  Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets , 2001 .

[14]  Gordon A. Russell,et al.  Real Analysis: A First Course , 1997 .

[15]  P. Massopust Fractal Functions, Fractal Surfaces, and Wavelets , 1995 .

[16]  Douglas P. Hardin,et al.  Fractal Interpolation Functions from $R^n$ into $R^m$ and their Projections , 1993 .

[17]  Björn Jawerth,et al.  Geometrical dimension versus smoothness , 1992 .

[18]  S. Graf,et al.  Self-similar sets 7, A characterization of self-similar fractals with positive Hausdorff measure , 1992 .

[19]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .

[20]  K. Falconer Dimensions and measures of quasi self-similar sets , 1989 .

[21]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[22]  Douglas P. Hardin,et al.  The capacity for a class of fractal functions , 1986 .

[23]  M. Navascués Fractal Approximation , 2010 .

[24]  Abel Carvalho Box dimension, oscillation and smoothness in function spaces , 2005 .

[25]  Y. Ye Separation properties for self-conformal sets , 2002 .

[26]  A. Fan,et al.  Iterated Function System and Ruelle Operator , 1999 .

[27]  Andreas Schief,et al.  Separation properties for self-similar sets , 1994 .

[28]  S. Krantz Fractal geometry , 1989 .

[29]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .