Density-Based Clustering Methods

Clustering techniques are often used for data exploration. In the literature, there are many examples of applications of different clustering methods. The density-based approaches form a separate group within the clustering techniques since they take into account the density of the data. Using the density of data as a similarity measure is practical in many real situations, because clusters of arbitrary shapes can be handled, what is not possible with convectional clustering methods.

[1]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[2]  Monica Casale,et al.  Minimum spanning tree: ordering edges to identify clustering structure , 2004 .

[3]  Eric R. Ziegel,et al.  Handbook of Chemometrics and Qualimetrics, Part B , 2000, Technometrics.

[4]  Desire L. Massart,et al.  Potential methods in pattern recognition : Part 2. CLUPOT —an unsupervised pattern recognition technique , 1981 .

[5]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[6]  D. Massart,et al.  Operations research in analytical chemistry , 1975 .

[7]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[8]  Desire L. Massart,et al.  The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis , 1983 .

[9]  Brian Everitt,et al.  Cluster analysis , 1974 .

[10]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[11]  Darinka Brodnjak-Vončina,et al.  Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids , 2005 .

[12]  Beata Walczak,et al.  Hierarchical clustering extended with visual complements of environmental data set , 2002 .

[13]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[14]  Desire L. Massart,et al.  Looking for Natural Patterns in Analytical Data, 2. Tracing Local Density with OPTICS , 2002, J. Chem. Inf. Comput. Sci..

[15]  Frederik Questier,et al.  The Neural-Gas network for classifying analytical data , 2002 .

[16]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[17]  Robin Sibson,et al.  The Construction of Hierarchic and Non-Hierarchic Classifications , 1968, Comput. J..

[18]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[19]  J. G. Skellam,et al.  A New Method for determining the Type of Distribution of Plant Individuals , 1954 .

[20]  D. Massart,et al.  Looking for natural patterns in data: Part 1. Density-based approach , 2001 .

[21]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[22]  Desire L. Massart,et al.  On the Optimal Partitioning of Data with K-Means, Growing K-Means, Neural Gas, and Growing Neural Gas , 2002, J. Chem. Inf. Comput. Sci..