GOLDRUSH - II. Clustering of galaxies at z ∼ 4–6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3
暂无分享,去创建一个
Satoshi Miyazaki | Peter Behroozi | Surhud More | Jean Coupon | Yoshiaki Ono | Yutaka Komiyama | Kazuhiro Shimasaku | Masami Ouchi | Takatoshi Shibuya | Masayuki Akiyama | Jun Toshikawa | Shun Saito | Yuichi Harikane | John Silverman | S. More | Yen-Ting Lin | J. Silverman | J. Coupon | S. Miyazaki | K. Shimasaku | M. Akiyama | Y. Komiyama | M. Ouchi | P. Behroozi | J. Toshikawa | A. Nishizawa | S. Saito | Y. Harikane | Y. Ono | A. Konno | Yen-Ting Lin | Sheng-Chieh Lin | Atsushi J. Nishizawa | T. Shibuya | Akira Konno | Sheng-Chieh Lin
[1] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[2] C. Baugh,et al. The clustering of dark matter haloes: scale-dependent bias on quasi-linear scales , 2015, 1509.06715.
[3] O. Fèvre,et al. Probing the galaxy–halo connection in UltraVISTA to z ∼ 2 , 2014, 1411.4983.
[4] A. Szalay,et al. Bias and variance of angular correlation functions , 1993 .
[5] C. Steidel,et al. SPECTROSCOPIC MEASUREMENTS OF THE FAR-ULTRAVIOLET DUST ATTENUATION CURVE AT z ∼ 3 , 2016, 1606.00434.
[6] Masayuki Tanaka,et al. PHOTOMETRIC REDSHIFT WITH BAYESIAN PRIORS ON PHYSICAL PROPERTIES OF GALAXIES , 2015, 1501.02047.
[7] M. Brodwin,et al. The Spitzer South Pole Telescope Deep-Field Survey: Linking galaxies and haloes at z = 1.5 , 2014, 1404.2930.
[8] Princeton University.,et al. A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.
[9] H. Rix,et al. THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2009, 0910.2821.
[10] R. Bouwens,et al. UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.
[11] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[12] Timothy M. Heckman,et al. Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.
[13] Mauro Giavalisco,et al. Lyman-Break Galaxies , 2002 .
[14] R. Davé,et al. THE LBT BOÖTES FIELD SURVEY. I. THE REST-FRAME ULTRAVIOLET AND NEAR-INFRARED LUMINOSITY FUNCTIONS AND CLUSTERING OF BRIGHT LYMAN BREAK GALAXIES AT Z ∼ 3 , 2013, 1307.4835.
[15] Satoshi Miyazaki,et al. The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .
[16] Yen-Ting Lin,et al. GOLDRUSH. III. A systematic search for protoclusters at z ∼ 4 based on the >100 deg2 area , 2017, 1708.09421.
[17] M. Pettini,et al. The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.
[18] T. Nagao,et al. Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.
[19] AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.
[20] V. Springel,et al. Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.
[21] Philip J. Tait,et al. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8 , 2017, 1704.05854.
[22] C. Steidel,et al. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.
[23] D. L. Clements,et al. The Canada-United Kingdom Deep Submillimeter Survey. V. The submillimeter properties of Lyman break galaxies , 2002 .
[24] E. Salpeter. The Luminosity function and stellar evolution , 1955 .
[25] J. Gunn,et al. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS , 2009, 0904.0002.
[26] V. Springel,et al. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.
[27] K. Nagamine,et al. MOLECULAR HYDROGEN REGULATED STAR FORMATION IN COSMOLOGICAL SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS , 2013, 1301.0063.
[28] Satoshi Miyazaki,et al. Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline , 2017, 1705.01599.
[29] B. Garilli,et al. The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z 3 , 2017, 1703.02049.
[30] J. Falcón-Barroso,et al. Secular Evolution of Galaxies , 2013 .
[31] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[32] A. Benson,et al. THE DWARFS BEYOND: THE STELLAR-TO-HALO MASS RELATION FOR A NEW SAMPLE OF INTERMEDIATE REDSHIFT LOW-MASS GALAXIES , 2013, 1310.1079.
[33] H. Umemura. Ultraviolet‐background‐induced bifurcation of galactic morphology , 2000, astro-ph/0006007.
[34] Masayuki Tanaka,et al. SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7 , 2017, 1705.00733.
[35] Yu Feng,et al. The clustering of z > 7 galaxies: predictions from the BLUETIDES simulation , 2017, 1707.02312.
[36] M. Jarvis,et al. The environment and host haloes of the brightest z~6 Lyman-break galaxies , 2017, 1702.03309.
[37] M.Vaccari,et al. The galaxy–halo connection in the VIDEO survey at 0.5 < z < 1.7 , 2015, 1511.05476.
[38] N. Kashikawa,et al. The very wide-field gzK Galaxy Survey – II. The relationship between star-forming galaxies at z ∼ 2 and their host haloes based upon HOD modelling , 2016, 1602.01845.
[39] S. Furlanetto,et al. Constraints on the star formation efficiency of galaxies during the epoch of reionization , 2015, 1512.06219.
[40] H. Trac,et al. SCORCH. I. THE GALAXY–HALO CONNECTION IN THE FIRST BILLION YEARS , 2015, 1507.02685.
[41] S. White,et al. Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.
[42] L. Waerbeke,et al. CARS: the CFHTLS-Archive-Research Survey - II. Weighing dark matter halos of Lyman-break galaxies at z = 3–5 , 2009, 0903.3951.
[43] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[44] T. Okamoto,et al. Reproducing cosmic evolution of galaxy population from z = 4 to 0 , 2014, 1404.7579.
[45] Michael S. Warren,et al. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.
[46] Yen-Ting Lin,et al. Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.
[47] A. Fontana,et al. THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT , 2015, 1507.05636.
[48] S. White,et al. The Structure of cold dark matter halos , 1995, astro-ph/9508025.
[49] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[50] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[51] STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[52] J. Gunn,et al. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.
[53] Masami Ouchi,et al. MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. II. EVOLUTION OF CLUMPY GALAXIES , 2015, 1511.07054.
[54] Philip J. Tait,et al. SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.
[55] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[56] R. Davé,et al. Galaxies in a simulated ΛCDM universe – II. Observable properties and constraints on feedback , 2009, 0901.1880.
[57] R. Somerville,et al. Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.
[58] R. Wechsler,et al. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.
[59] S. Faber,et al. Constraining the galaxy–halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties , 2017, 1703.04542.
[60] Song Huang,et al. The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.
[61] H. Ferguson,et al. The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ⩽ z ⩽ 5.5 from the GOODS Survey , 2005, astro-ph/0508090.
[62] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[63] T. Budavari,et al. The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.
[64] B. Reid,et al. CONSTRAINING THE LUMINOUS RED GALAXY HALO OCCUPATION DISTRIBUTION USING COUNTS-IN-CYLINDERS , 2008, 0809.4505.
[65] J. Silk,et al. Galaxy formation and Hubble sequence , 1993 .
[66] Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.
[67] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[68] Properties of host haloes of Lyman-break galaxies and Lyman α emitters from their number densities and angular clustering , 2003, astro-ph/0307207.
[69] B. Guiderdoni,et al. The UV, Lyman α, and dark matter halo properties of high-redshift galaxies , 2015, 1503.06635.
[70] M. Pettini,et al. Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.
[71] Supercomputing,et al. Dark-ages reionization and galaxy formation simulation–XI. Clustering and halo masses of high redshift galaxies , 2017, 1703.05419.
[72] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .
[73] B. Lundgren,et al. GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < z < 2 , 2010, 1012.1317.
[74] Masami Ouchi,et al. MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.
[75] Satoshi Miyazaki,et al. The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.
[76] Walter A. Siegmund,et al. The Second Data Release of the Sloan Digital Sky Survey , 2004 .
[77] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[78] J. Dunlop,et al. The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.
[79] M. Boylan-Kolchin,et al. The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations , 2010, 1001.2304.
[80] M. Dickinson,et al. Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .
[81] H. Ferguson,et al. AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT , 2015, 1504.00005.
[82] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[83] S. M. Fall,et al. The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.
[84] R. Teyssier,et al. Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.
[85] S. More,et al. EVOLUTION OF STELLAR-TO-HALO MASS RATIO AT z = 0–7 IDENTIFIED BY CLUSTERING ANALYSIS WITH THE HUBBLE LEGACY IMAGING AND EARLY SUBARU/HYPER SUPRIME-CAM SURVEY DATA , 2015, 1511.07873.
[86] J. Brownstein,et al. The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe , 2016, 1607.04678.
[87] Lihwai Lin,et al. Evolution of Galactic Outflows at Revealed with SDSS, DEEP2, and Keck Spectra , 2017, 1703.01885.
[88] R. Wechsler,et al. Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.
[89] D. Erb,et al. GALACTIC OUTFLOWS IN ABSORPTION AND EMISSION: NEAR-ULTRAVIOLET SPECTROSCOPY OF GALAXIES AT 1 < z < 2 , 2012, 1209.4903.
[90] P. W. Wang,et al. The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.
[91] Rotation curve decomposition for size–mass relations of bulge, disk, and dark halo components in spiral galaxies , 2015, 1510.05752.
[92] Phillip James Edwin Peebles,et al. Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .
[94] C. Conselice,et al. The SCUBA-2 Cosmology Legacy Survey: Multi-wavelength Properties of ALMA-identified Submillimeter Galaxies in UKIDSS UDS , 2016, 1611.03084.
[95] E. Quataert,et al. On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.
[96] B. Garilli,et al. The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field , 2015, 1502.02867.
[97] P. Peebles,et al. The Large-Scale Structure of the Universe , 1980 .
[98] Case Western Reserve University,et al. Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.
[99] Risa H. Wechsler,et al. ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY , 2012, 1209.3013.
[100] M. Giavalisco,et al. The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.
[101] K. Subramanian,et al. Spatial Clustering of High Redshift Lyman Break Galaxies , 2012, 1208.2097.
[102] H. F. Erguson,et al. THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .
[103] C. Steidel,et al. Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 Hα OBSERVATIONS OF A LARGE SAMPLE OF GALAXIES AT z ∼ 2: IMPLICATIONS FOR STAR FORMATION IN HIGH REDSHIFT GALAXIES 1 , 2006 .
[104] Tristan L. Smith,et al. NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.
[105] S. More,et al. Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.
[106] A. K. Inoue,et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.
[107] C. Steidel,et al. THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z ≃ 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1204.3636.
[108] S. Kay,et al. Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.
[109] M. Rees,et al. Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .
[110] P. A. Price,et al. THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.
[111] T. Grav,et al. PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.
[112] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[113] Michael S. Warren,et al. THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.
[114] Shannon G. Patel,et al. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.
[115] R. Bouwens,et al. MEASUREMENT OF GALAXY CLUSTERING AT z ∼ 7.2 AND THE EVOLUTION OF GALAXY BIAS FROM 3.8 < z < 8 IN THE XDF, GOODS-S, AND GOODS-N , 2014, 1407.7316.
[116] J. Tinker,et al. THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.
[117] T. Treu,et al. THE GALAXY UV LUMINOSITY FUNCTION BEFORE THE EPOCH OF REIONIZATION , 2015, Proceedings of the International Astronomical Union.
[118] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[119] R. Bouwens,et al. The Rest-frame Optical (900 nm) Galaxy Luminosity Function at z ∼ 4–7: Abundance Matching Points to Limited Evolution in the MSTAR/MHALO Ratio at z ≥ 4 , 2016, 1611.09354.
[120] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[121] Y. Mellier,et al. Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.
[122] Masayuki Tanaka,et al. SILVERRUSH. II. First Catalogs and Properties of ~2,000 Lya Emitters and Blobs at z~6-7 Identified over the 14-21 deg2 Sky , 2017, 1704.08140.
[123] Yukiko Kamata,et al. Hyper Suprime-Cam: Camera dewar design , 2018 .
[124] J. Anthony Tyson,et al. Toward Precision LSST Weak-Lensing Measurement. I. Impacts of Atmospheric Turbulence and Optical Aberration , 2010, 1011.1913.
[125] Potsdam,et al. The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.
[126] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[127] C. Baugh,et al. The clustering and halo occupation distribution of Lyman-break galaxies at z ˜ 4. , 2015, 1511.01983.
[128] C. Frenk,et al. The clustering of the first galaxy haloes , 2008, 0804.0004.
[129] Masayuki Tanaka,et al. The Galaxy–Halo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields , 2016, 1612.06869.
[130] L. Infante,et al. The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ~ 3 , 2012, 1204.3635.
[131] Craig Loomis,et al. Hyper Suprime-Cam , 2012, Other Conferences.
[132] R. Wechsler,et al. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.
[133] Piero Madau,et al. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .
[134] Mohammad Akhlaghi,et al. Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky , 2017, 1704.06004.
[135] T. Nagao,et al. SILVERRUSH. IV. Lyα luminosity functions at z = 5.7 and 6.6 studied with ∼1300 Lyα emitters on the 14–21 deg2 sky , 2017, 1705.01222.
[136] O. Fèvre,et al. The FMOS-COSMOS Survey of Star-forming Galaxies at Z ∼ 1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies , 2017, 1703.08326.
[137] M. Dopita,et al. Cooling functions for low-density astrophysical plasmas , 1993 .
[138] C. Baugh,et al. Understanding the non-linear clustering of high-redshift galaxies. , 2017, 1702.00853.
[139] Yu Feng,et al. Forecasts for the WFIRST High Latitude Survey using the BlueTides simulation , 2016, 1605.05670.
[140] Andrew P. Hearin,et al. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes? , 2015, 1509.00482.
[141] Masayuki Umemura,et al. Formation of Dwarf Galaxies during the Cosmic Reionization , 2003 .