Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution

In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru(4+) to unstable Ru(n>4+). This ordered(Ru(4+))-to-disordered(Ru(n>4+)) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.

[1]  Peter Strasser,et al.  Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials , 2012 .

[2]  B. Dabrowski,et al.  Reduced ferromagnetic transition temperatures in SrRu1-vO3 perovskites from Ru-site vacancies , 2004 .

[3]  J. Greeley,et al.  Unique activity of platinum adislands in the CO electrooxidation reaction. , 2008, Journal of the American Chemical Society.

[4]  Yuyan Shao,et al.  Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective , 2012 .

[5]  Hubert A. Gasteiger,et al.  Oxygen reduction reaction on Pt(111): effects of bromide , 1999 .

[6]  J. Nørskov,et al.  Fuel Cell Science: Theory, Fundamentals, and Biocatalysis , 2010 .

[7]  Ullrich Pietsch,et al.  High-Resolution X-Ray Scattering , 2004 .

[8]  H. Gasteiger,et al.  The structure of adsorbed bromide concurrent with the underpotential deposition (UPD) of Cu on Pt(111) , 1997 .

[9]  A. Grimaud,et al.  Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts , 2012 .

[10]  Shinzo Kohjiya,et al.  Solid State Ionics for Batteries , 2005 .

[11]  G. Rohrer,et al.  Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .

[12]  J. Longo,et al.  Oxygen Electrocatalysis on Some Oxide Pyrochlores , 1983 .

[13]  B. Conway,et al.  ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films , 1984 .

[14]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[15]  S. Machado,et al.  Characterisation of surfaces modified by sol-gel derived RuxIr1−xO2 coatings for oxygen evolution in acid medium , 1998 .

[16]  S. Ramanathan Thin Film Metal-Oxides , 2010 .

[17]  Ian K. Robinson,et al.  Surface X-ray diffraction , 1987 .

[18]  S. Ramanathan,et al.  Orientation dependent oxygen exchange kinetics on single crystal SrTiO3 surfaces. , 2012, Physical chemistry chemical physics : PCCP.

[19]  Sergio Trasatti,et al.  Electrocatalysis: understanding the success of DSA® , 2000 .

[20]  K. Kinoshita,et al.  Electrochemical Oxygen Technology , 1992 .

[21]  K. Anitha,et al.  Electrocatalytic properties of spinel-type MnxFe3 –x O4synthesized below 100 °C for oxygen evolution in KOH solutions , 1996 .

[22]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[23]  M. Hirayama,et al.  Oxygen Evolution and Reduction Reactions on La0.8Sr0.2CoO3 (001), (110), and (111) Surfaces in an Alkaline Solution , 2012 .

[24]  R. Kötz,et al.  XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes , 1983 .

[25]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[26]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[27]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[28]  E. Zhecheva,et al.  Electrocatalytic activity of spinel related cobalties MxCo3−xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction , 1997 .

[29]  S. Trasatti Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .

[30]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[31]  L. Marks,et al.  A chemical approach to understanding oxide surfaces , 2012 .

[32]  P. Ross,et al.  A Study of Bismuth Ruthenate as an Electrocatalyst for Bifunctional Air Electrodes , 1994 .

[33]  Ullrich Pietsch,et al.  High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures , 2004 .

[34]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[35]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[36]  K. Neyerlin,et al.  Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media , 2010 .

[37]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[38]  E. Yeager,et al.  Perovskite-type oxides: Oxygen electrocatalysis and bulk structure , 1988 .

[39]  H. Gasteiger,et al.  The effect of chloride on the underpotential deposition of copper on Pt(111): AES, LEED, RRDE, and X-ray scattering studies , 1995 .

[40]  F. Ferroni Status and perspectives in B-Physics , 2007 .

[41]  M. Beasley,et al.  Structure, physical properties, and applications of SrRuO3 thin films , 2012 .

[42]  A. Lasia,et al.  Kinetics of hydrogen evolution on nickel electrodes , 1990 .

[43]  J. Prakash,et al.  Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts , 1999 .

[44]  M. Arenz,et al.  Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode. , 2004, Journal of the American Chemical Society.

[45]  H. Over Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. , 2012, Chemical reviews.

[46]  Dusan Strmcnik,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+‐Ni(OH)2‐Pt Interfaces. , 2012 .

[47]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[48]  R. Kötz,et al.  Oxygen evolution and corrosion: XPS investigation on Ru and RuO2 electrodes , 1983 .

[49]  D. Saylor,et al.  Surface Energy Anisotropy of SrTiO3 at 1400°C in Air , 2003 .

[50]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[51]  Gadi Rothenberg,et al.  Catalysis and Electrocatalysis at Nanoparticle Surfaces , 2004 .

[52]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[53]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[54]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[55]  D. Fong,et al.  IN SITU SYNCHROTRON X-RAY STUDIES OF FERROELECTRIC THIN FILMS , 2006 .

[56]  Characterization of the Schottky barrier in SrRuO3∕Nb:SrTiO3 junctions , 2007, cond-mat/0703358.

[57]  Nemanja Danilovic,et al.  Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. , 2013, Nature chemistry.

[58]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[59]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[60]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[61]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[62]  J. Pandey,et al.  Sol-gel derived spinel MxCo3−xO4 (M=Ni, Cu; 0≤x≤1) films and oxygen evolution ☆ , 2000 .