Iterative total variation schemes for nonlinear inverse problems

In this paper we discuss the construction, analysis and implementation of iterative schemes for the solution of inverse problems based on total variation regularization. Via different approximations of the nonlinearity we derive three different schemes resembling three well-known methods for nonlinear inverse problems in Hilbert spaces, namely iterated Tikhonov, Levenberg–Marquardt and Landweber. These methods can be set up such that all arising subproblems are convex optimization problems, analogous to those appearing in image denoising or deblurring. We provide a detailed convergence analysis and appropriate stopping rules in the presence of data noise. Moreover, we discuss the implementation of the schemes and the application to distributed parameter estimation in elliptic partial differential equations.

[1]  Hui Huang,et al.  On Effective Methods for Implicit Piecewise Smooth Surface Recovery , 2006, SIAM J. Sci. Comput..

[2]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[3]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[4]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[5]  Karl Kunisch,et al.  Some applications of BV functions in optimal controls and calculus of variations , 1998 .

[6]  M. Hanke A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems , 1997 .

[7]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[8]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[9]  B. Kaltenbacher,et al.  Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems , 2009 .

[10]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[11]  Lin He,et al.  Blind deconvolution using TV regularization and Bregman iteration , 2005, Int. J. Imaging Syst. Technol..

[12]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[13]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[14]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[15]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[16]  Tal Schuster,et al.  Nonlinear iterative methods for linear ill-posed problems in Banach spaces , 2006 .

[17]  Stanley Osher,et al.  Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising , 2007, IEEE Transactions on Image Processing.

[18]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[19]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[20]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[21]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[22]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[23]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[24]  Karl Kunisch,et al.  Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..

[25]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[26]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[27]  R. Luce,et al.  Parameter identification for an elliptic partial differential equation with distributed noisy data , 1999 .

[28]  O. Scherzer,et al.  Error estimates for non-quadratic regularization and the relation to enhancement , 2006 .

[29]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[30]  Lin He,et al.  Iterative Total Variation Regularization with Non-Quadratic Fidelity , 2006, Journal of Mathematical Imaging and Vision.

[31]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.