Seamless Integration of Diverse Data Types into Exploratory Visualization Systems

Visual data exploration involves presenting data in some graphical form and allowing the human to interactively gain insight into the data. Visual data exploration techniques have proven to be very useful for exploratory data analysis, especially for mining large databases. However, the lack of explicit content semantics within the framework of the visualization tool makes interpretation of the visualizations difficult at times. The aim of our research is the development of a comprehensive framework for integrating semantics of data into an existing visualization tool in a flexible yet minimally intrusive manner. The first stage of the framework involves a transformation process that enables the mapping between a wide range of data types to a form the visualization system can process. This stage exploits the strengths of XML for handling semantics extraction, flexible data modelling of domains and managing the data mapping rules to conform the data to the requirements of the visualization tool. The second stage of the framework enables the visualization tool to access and present the semantic information separate from the data display. We demonstrate and validate this framework by illustrating the extension of XmdvTool, a multivariate data visualization system, to handle varied data types such as categorical fields and unstructured text files. We believe the framework is sufficiently powerful to incorporate other forms of data, as well as to be used to extend other visualization tools, such as OpenDX.

[1]  Hikmet Senay,et al.  A knowledge-based system for visualization design , 1994, IEEE Computer Graphics and Applications.

[2]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[3]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[4]  Paul F. Velleman Learning data analysis with Data desk , 1989 .

[5]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[6]  Ronald P. Cody,et al.  Applied Statistics and the SAS Programming Language. , 1986 .

[7]  Brian Johnson,et al.  TreeViz: treemap visualization of hierarchically structured information , 1992, CHI.

[8]  T. J. Watson,et al.  Ordering Categorical Data to Improve VisualizationSheng , 1999 .

[9]  Wojciech Basalaj Proximity visualisation of abstract data , 2001 .

[10]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[11]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[12]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[13]  Bruce Hendrickson,et al.  Knowledge Mining With VxInsight: Discovery Through Interaction , 1998, Journal of Intelligent Information Systems.

[14]  Andreas Buja,et al.  XGobi: Interactive Dynamic Data Visualization in the X Window System , 1998 .

[15]  Bob Francis,et al.  Silicon Graphics Inc. , 1993 .

[16]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[17]  Andreas Krause,et al.  The basics of S-Plus , 2002 .

[18]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[19]  M. Greenacre Correspondence analysis in practice , 1993 .

[20]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[21]  Jussi Myllymaki,et al.  DEVise: Integrated Querying and Visualization of Large Datasets , 1997, SIGMOD Conference.

[22]  M. Friendly Mosaic Displays for Multi-Way Contingency Tables , 1994 .

[23]  Satoru Kawai,et al.  A general framework for visualizing abstract objects and relations , 1991, TOGS.

[24]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[25]  Steven F. Roth,et al.  Data characterization for intelligent graphics presentation , 1990, CHI '90.

[26]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[27]  Shiping Huang,et al.  Exploration of dimensionality reduction for text visualization , 2005, Coordinated and Multiple Views in Exploratory Visualization (CMV'05).

[28]  Richard May,et al.  A virtual environment for multimedia intelligence data analysis , 1996, IEEE Computer Graphics and Applications.

[29]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[30]  Matthew O. Ward,et al.  Mapping Nominal Values to Numbers for Effective Visualization , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[31]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[32]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[33]  Matthew Chalmers,et al.  Bead: explorations in information visualization , 1992, SIGIR '92.

[34]  J. A. Hartigan,et al.  Mosaics for Contingency Tables , 1981 .

[35]  Michael Friendly,et al.  Visualizing Categorical Data , 2009, Encyclopedia of Database Systems.