The nearest polynomial of lower degree
暂无分享,去创建一个
[1] Robert M. Corless,et al. Pseudospectra of Matrix Polynomials that Are Expressed in Alternative Bases , 2007, Math. Comput. Sci..
[2] A. Shakoori. The Bézout matrix in the Lagrange basis , 2004 .
[3] Robert M. Corless,et al. The nearest polynomial with a given zero, revisited , 2005, SIGS.
[4] Robert M Corless,et al. Bernstein Bases are Optimal , but , sometimes , Lagrange Bases are Better , 2004 .
[5] R. M. Corless,et al. Generalized Companion Matrices in the Lagrange Bases , 2004 .
[6] Guido Brunnett,et al. The geometry of optimal degree reduction of Bézier curves , 1996, Comput. Aided Geom. Des..
[7] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[8] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[9] A. Amiraslani. Dividing polynomials when you only know their values , 2004 .
[10] Hans J. Stetter,et al. The nearest polynomial with a given zero, and similar problems , 1999, SIGS.
[11] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[12] Young Joon Ahn,et al. Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients , 2004, Comput. Aided Geom. Des..
[13] Robert M. Corless,et al. Polyno-mial Algebra by Values , 2004 .
[14] Thomas Hermann. On the stability of polynomial transformations between Taylor, Bernstein and Hermite forms , 2005, Numerical Algorithms.
[15] N. Higham. The numerical stability of barycentric Lagrange interpolation , 2004 .
[16] Erich Kaltofen,et al. Efficient algorithms for computing the nearest polynomial with constrained roots , 1998, ISSAC '98.
[17] T. J. Rivlin. Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .