A Three-Phase Algorithm for Semi-Infinite Programs

In this paper we define general classes of nonlinear semi-infinite programs and developea unified computational scheme for their numerical treatment. This scheme is based on the fact that necessary optimality conditions may he expressed in the form of a nonlinear system of equations with finitely many equations and unknowns. The computational treatment proceeds in three phases: i) A discretized version of the given task is solved, giving an approximate solution;ii) A nonlinear system defining optimality conditions is derived;iii) This system is solved numerically. In general, the structure of the nonlinear system is not known before completion of Phase i). Several applications are indicated.

[1]  E. Cheney Introduction to approximation theory , 1966 .

[2]  L. Riekert,et al.  K. J. Laidler: Chemical Kinetics, Second Edition. Mc Graw Hill Book Company, New York 1965. 566 Seiten. Preis: $ 9,50 , 1966, Berichte der Bunsengesellschaft für physikalische Chemie.

[3]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[4]  Sven-Åke Gustafson,et al.  On the Computational Solution of a Class of Generalized Moment Problems , 1970 .

[5]  G. Watson The calculation of best linear one-sided _{} approximations , 1973 .

[6]  Kenneth O. Kortanek,et al.  Numerical treatment of a class of semi‐infinite programming problems , 1973 .

[7]  R. Hettich Kriterien zweiter Ordnung für lokal beste Approximationen , 1974 .

[8]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[9]  R. Hettich,et al.  A newton-method for nonlinear Chebyshev approximation , 1976 .

[10]  D. Mayne,et al.  An algorithm for optimization problems with functional inequality constraints , 1976 .

[11]  K. Kortanek,et al.  Equivalence Theorems and Cutting Plane Algorithms for a Class of Experimental Design Problems , 1977 .

[12]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[13]  C. C. Gonzaga,et al.  On Constraint Dropping Schemes and Optimality Functions for a Class of Outer Approximations Algorithms , 1979 .

[14]  Gerhard Opfer,et al.  New extremal properties for constructing conformal mappings , 1979 .

[15]  R. Cottle,et al.  Management model of a groundwater system with a transient pollutant source , 1979 .

[16]  G. Opfer Conformal mappings onto prescribed regions via optimization techniques , 1980 .

[17]  C. C. Gonzaga,et al.  An improved algorithm for optimization problems with functional inequality constraints , 1980 .

[18]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[19]  G. Watson Globally convergent methods for semi-infinite programming , 1981 .

[20]  Linear Chebyshev Complex Function Approximation. , 1981 .

[21]  K. Glashoff,et al.  A new method for Chebyshev approximation of complex-valued functions , 1981 .

[22]  S. Gorelick,et al.  Optimal dynamic management of groundwater pollutant sources , 1982 .

[23]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[24]  G. A. Watson,et al.  Numerical Experiments with Globally Convergent Methods for Semi-Infinite Programming Problems , 1983 .