Peptidase Type I Antibiotics through Inhibition of Signal-Lactam β Broadening the Spectrum of

Published Ahead of Print 18 June 2012. 10.1128/AAC.00726-12. 2012, 56(9):4662. DOI: Antimicrob. Agents Chemother. Lynn Miesel Katherine Young, Simon Wong, Sherman T. Waddell and Powles, Kathryn I. Skorey, John Tam, Christopher M. Tan, Benton-Perdomo, Mihai Petcu, John W. Phillips, Mary Ann Painter, Craig A. Parish, Young-Whan Park, Liliana Molly M. Lin, Anna A. Michels, Aimie M. Ogawa, Ronald E. Penny S. Leavitt, Christian Lebeau-Jacob, Suzy S. Lee, Michel Gallant, Xin Gu, Nancy J. Kevin, Josiane Lafleur, Deschamps, Robert G. K. Donald, Andrew M. Galgoci, Beaulieu, Alexandre Caron, David Claveau, Kathleen Alex G. Therien, Joann L. Huber, Kenneth E. Wilson, Patrick Peptidase Type I Antibiotics through Inhibition of Signal -Lactam β Broadening the Spectrum of

[1]  B. Berger-Bächi,et al.  femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains , 1991, Journal of bacteriology.

[2]  Terry Roemer,et al.  Staphylococcus aureus TargetArray: Comprehensive Differential Essential Gene Expression as a Mechanistic Tool To Profile Antibacterials , 2010, Antimicrobial Agents and Chemotherapy.

[3]  Y. Miyake,et al.  Effect of combination of oxacillin and non-beta-lactam antibiotics on methicillin-resistant Staphylococcus aureus. , 1994, The Journal of antimicrobial chemotherapy.

[4]  B. Berger-Bächi,et al.  Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus , 1993, Journal of bacteriology.

[5]  Scott K. Smith,et al.  Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. , 2011, Chemistry & biology.

[6]  B. Berger-Bächi,et al.  Factors influencing methicillin resistance in staphylococci , 2002, Archives of Microbiology.

[7]  J. Reilly,et al.  Comprehensive Characterization of Methicillin-resistant Staphylococcus aureus subsp. aureus COL Secretome by Two-dimensional Liquid Chromatography and Mass Spectrometry* , 2010, Molecular & Cellular Proteomics.

[8]  F. Romesberg,et al.  In Vitro Activities of Arylomycin Natural-Product Antibiotics against Staphylococcus epidermidis and Other Coagulase-Negative Staphylococci , 2010, Antimicrobial Agents and Chemotherapy.

[9]  A. Singh,et al.  Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. , 2011, ACS chemical biology.

[10]  F. Romesberg,et al.  Broad-spectrum antibiotic activity of the arylomycin natural products is masked by natural target mutations. , 2010, Chemistry & biology.

[11]  Terry Roemer,et al.  Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. , 2009, Chemistry & biology.

[12]  M. Page,et al.  Crystallographic and Biophysical Analysis of a Bacterial Signal Peptidase in Complex with a Lipopeptide-based Inhibitor* , 2004, Journal of Biological Chemistry.

[13]  D. Zühlke,et al.  A Proteomic View of an Important Human Pathogen – Towards the Quantification of the Entire Staphylococcus aureus Proteome , 2009, PloS one.

[14]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Sang Ho Lee,et al.  A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. , 2009, Chemistry & biology.

[16]  F. Romesberg,et al.  Structural and initial biological analysis of synthetic arylomycin A2. , 2007, Journal of the American Chemical Society.

[17]  M. Sugai,et al.  Characterization of fmtA, a Gene That Modulates the Expression of Methicillin Resistance in Staphylococcus aureus , 1999, Antimicrobial Agents and Chemotherapy.

[18]  P. Kulanthaivel,et al.  Novel Lipoglycopeptides as Inhibitors of Bacterial Signal Peptidase I* , 2004, Journal of Biological Chemistry.

[19]  C. Malone,et al.  Proteolytic Cleavage Inactivates the Staphylococcus aureus Lipoteichoic Acid Synthase , 2011, Journal of bacteriology.

[20]  A. Gikas,et al.  International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. , 2010, American journal of infection control.

[21]  Eric Langlois,et al.  Restoring Methicillin-Resistant Staphylococcus aureus Susceptibility to β-Lactam Antibiotics , 2012, Science Translational Medicine.

[22]  T. Kohler,et al.  The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. , 2010, International journal of medical microbiology : IJMM.

[23]  M. T. Black,et al.  Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus , 1996, Journal of bacteriology.

[24]  A. Tomasz,et al.  Role of murE in the Expression of β-Lactam Antibiotic Resistance in Staphylococcus aureus , 2004, Journal of bacteriology.

[25]  A. Wyke,et al.  Synthesis of peptidoglycan in vivo in methicillin-resistant Staphylococcus aureus. , 2005, European journal of biochemistry.

[26]  S. Mobashery,et al.  The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus* , 2004, Journal of Biological Chemistry.

[27]  F. Tenover,et al.  Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. , 1997, The Journal of antimicrobial chemotherapy.

[28]  Substrate based peptide aldehyde inhibits bacterial type I signal peptidase. , 2009, Bioorganic & medicinal chemistry letters.

[29]  A. West,et al.  Lipopeptide substrates for SpsB, the Staphylococcus aureus type I signal peptidase: design, conformation and conversion to alpha-ketoamide inhibitors. , 2003, European journal of medicinal chemistry.

[30]  M. Qoronfleh,et al.  Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes , 1986, Antimicrobial Agents and Chemotherapy.

[31]  J. Bosso,et al.  Evaluation of antibiotic synergy against Acinetobacter baumannii: a comparison with Etest, time-kill, and checkerboard methods. , 2000, Diagnostic microbiology and infectious disease.

[32]  G. Siuzdak,et al.  Type I Signal Peptidase and Protein Secretion in Staphylococcus epidermidis , 2010, Journal of bacteriology.

[33]  A. Tomasz,et al.  Methicillin Resistance in Staphylococcus Essential for Expression of High-level Reassessment of the Number of Auxiliary Genes , 2022 .