Energy-Efficient Computing Using Agent-Based Multi-objective Dynamic Optimization

Nowadays distributed systems face a new challenge, almost nonexistent a decade ago: energy-efficient computing. Due to the rising environmental and economical concerns and with trends driving operational costs beyond the acquisition ones, green computing is of more actuality than never before. The aspects to deal with, e.g. dynamic systems, stochastic models or time-dependent factors, call nonetheless for paradigms combining the expertise of multiple research areas. An agent-based dynamic multi-objective evolutionary algorithm relying on simulation and anticipation mechanisms is presented in this chapter. A first aim consists in addressing several difficult energy-efficiency optimization issues, in a second phase, different open questions being outlined for future research.

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  Zbigniew Michalewicz,et al.  Advances in Metaheuristics for Hard Optimization , 2008, Advances in Metaheuristics for Hard Optimization.

[3]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[4]  William Gropp MPI at Exascale: Challenges for Data Structures and Algorithms , 2009, PVM/MPI.

[5]  Douglas F. Parkhill,et al.  The Challenge of the Computer Utility , 1966 .

[6]  Jesper Andersson,et al.  Self-Organizing Architectures, First International Workshop, SOAR 2009, Cambridge, UK, September 14, 2009, Revised Selected and Invited Papers , 2010, SOAR.

[7]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[8]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[9]  Jack Dongarra,et al.  Recent Advances in Parallel Virtual Machine and Message Passing Interface, 15th European PVM/MPI Users' Group Meeting, Dublin, Ireland, September 7-10, 2008. Proceedings , 2008, PVM/MPI.

[10]  S.D.J. McArthur,et al.  Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges , 2007, IEEE Transactions on Power Systems.

[11]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[12]  Rajarshi Das,et al.  Utility-based collaboration among autonomous agents for resource allocation in data centers , 2006, AAMAS '06.

[13]  Peter A. N. Bosman,et al.  Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case , 2007, GECCO '07.

[14]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[15]  Jordi Torres,et al.  Towards energy-aware scheduling in data centers using machine learning , 2010, e-Energy.

[16]  Laurence T. Yang,et al.  Advances in Grid and Pervasive Computing, Third International Conference, GPC 2008, Kunming, China, May 25-28, 2008. Proceedings , 2008, GPC.

[17]  Diana Marculescu,et al.  Analysis of dynamic voltage/frequency scaling in chip-multiprocessors , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[18]  Gernot Heiser,et al.  Dynamic voltage and frequency scaling: the laws of diminishing returns , 2010 .

[19]  Nancy Wilkins-Diehr,et al.  TeraGrid Science Gateway AAAA Model: implementation and lessons learned , 2010 .

[20]  Vladimir Stantchev,et al.  Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing , 2009, GPC.

[21]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  R. White,et al.  Energy resource management in the virtual data center , 2004, IEEE International Symposium on Electronics and the Environment, 2004. Conference Record. 2004.

[23]  Salim Hariri,et al.  Autonomic power and performance management for computing systems , 2006, 2006 IEEE International Conference on Autonomic Computing.

[24]  David J. Brown,et al.  Toward Energy-Efficient Computing , 2010, ACM Queue.

[25]  Thomas Sterling,et al.  Enabling Technologies for Petaflops Computing , 1995 .

[26]  Vladimir Stantchev,et al.  Performance Evaluation of Cloud Computing Offerings , 2009, 2009 Third International Conference on Advanced Engineering Computing and Applications in Sciences.

[27]  Vincent K. N. Lau,et al.  Automatic Performance Setting for Dynamic Voltage Scaling , 2002, Wirel. Networks.

[28]  Robert K. Kaufmann,et al.  The Mechanisms for Autonomous Energy Efficiency Increases: A Cointegration Analysis of the US Energy/GDP Ratio , 2004 .

[29]  Rami G. Melhem,et al.  Dynamic and aggressive scheduling techniques for power-aware real-time systems , 2001, Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420).

[30]  Franck Cappello,et al.  Grid'5000: a large scale and highly reconfigurable grid experimental testbed , 2005, The 6th IEEE/ACM International Workshop on Grid Computing, 2005..

[31]  Daniel A. Menascé,et al.  Resource Allocation for Autonomic Data Centers using Analytic Performance Models , 2005, Second International Conference on Autonomic Computing (ICAC'05).

[32]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[33]  大野 公男,et al.  H.F.Hameka: Advanced Quantum Chemistry, Addison-Wesley Pub. Co., Reading Mass., 1965, 277頁, 15×23cm, 5,500円. , 1966 .

[34]  Rajarshi Das,et al.  Autonomic multi-agent management of power and performance in data centers , 2008, AAMAS.

[35]  Martijn C. Schut,et al.  New Ways to Calibrate Evolutionary Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[36]  Raffaela Mirandola,et al.  A Bio-inspired Algorithm for Energy Optimization in a Self-organizing Data Center , 2009, SOAR.