The Numerical Solution of Nonlinear Stochastic Dynamical Systems: a Brief Introduction

The numerical analysis of stochastic differential equations, currently undergoing rapid development, differs significantly from its deterministic counterpart due to the peculiarities of stochastic calculus. This article presents a brief, pedagogical introduction to the subject from the perspective of stochastic dynamical systems. The key tool is the stochastic Taylor expansion. Strong, pathwise approximations are distinguished from weak, functional approximations, and their role in stability with Lyapunov exponents and stiffness is discussed.