Linear Parameter-Varying Control to Minimize Risks in Type 1 Diabetes

Abstract This work provides a time-varying controller to improve the glycemic regulation in Type 1 Diabetes Mellitus (T1DM) patients. To this end, a Linear Parameter-Varying (LPV) control is designed in order to minimize the risk of hypoglycemia (glucose concentrations 180 mg/dl). The controllers have been tested in the 10 in silico adults from the distribution version of the UVA/Padova metabolic simulator (30 patients). All Continuous Glucose Monitoring (CGM) and Continuous Subcutaneous Insulin Infusion (CSII) pump constraints are considered during the simulations. Different meal scenarios have been tested showing very promising results.

[1]  A. S. Ghersin,et al.  Time-Varying Procedures for Insulin-Dependent Diabetes Mellitus Control , 2011, J. Electr. Comput. Eng..

[2]  J. Bondia,et al.  El Páncreas Artificial, Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1 , 2010 .

[3]  R. Hovorka,et al.  Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes , 2008 .

[4]  Ricardo Femat,et al.  Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem , 2004 .

[5]  Levente Kovács,et al.  Robust Tight Glycaemic Control of ICU patients , 2011 .

[6]  Claudio Cobelli,et al.  GIM, Simulation Software of Meal Glucose—Insulin Model , 2007, Journal of diabetes science and technology.

[7]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[8]  Jozsef Bokor,et al.  Model-based nonlinear optimal blood glucose control of Type I diabetes patients , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Patricio Colmegna,et al.  Analysis of three T1DM simulation models for evaluating robust closed-loop controllers , 2014, Comput. Methods Programs Biomed..

[10]  Boris Kovatchev,et al.  Statistical tools to analyze continuous glucose monitor data. , 2009, Diabetes technology & therapeutics.

[11]  P. H. COLMEGNA,et al.  INSULIN DEPENDENT DIABETES MELLITUS CONTROL , 2014 .

[12]  R. Khandekar,et al.  Regular visits to a diabetes clinic were associated with lower magnitude of visual disability and diabetic retinopathy-a hospital-based historical cohort study in yemen. , 2009, Diabetes technology & therapeutics.

[13]  Dale E. Seborg,et al.  Control-Relevant Models for Glucose Control Using A Priori Patient Characteristics , 2012, IEEE Transactions on Biomedical Engineering.

[14]  A. S. Ghersin,et al.  LPV control of glucose for Diabetes type I , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[15]  Francis J. Doyle,et al.  Robust H∞ glucose control in diabetes using a physiological model , 2000 .

[16]  G. Steil,et al.  Feasibility of Automating Insulin Delivery for the Treatment of Type 1 Diabetes , 2006, Diabetes.

[17]  Rolf Johansson,et al.  Subspace-Based Model Identification of Diabetic Blood Glucose Dynamics , 2009 .

[18]  Christofer Toumazou,et al.  A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology , 2012, Journal of diabetes science and technology.

[19]  L. Magni,et al.  Evaluating the Efficacy of Closed-Loop Glucose Regulation via Control-Variability Grid Analysis , 2008, Journal of diabetes science and technology.

[20]  Bruce Zimmerman,et al.  Medical Management of Type 2 Diabetes , 2003 .

[21]  C. Cobelli,et al.  In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes , 2009, Journal of diabetes science and technology.