Doubly robust estimation of the local average treatment effect curve

We consider estimation of the causal effect of a binary treatment on an outcome, conditionally on covariates, from observational studies or natural experiments in which there is a binary instrument for treatment. We describe a doubly robust, locally efficient estimator of the parameters indexing a model for the local average treatment effect conditionally on covariates V when randomization of the instrument is only true conditionally on a high dimensional vector of covariates X, possibly bigger than V. We discuss the surprising result that inference is identical to inference for the parameters of a model for an additive treatment effect on the treated conditionally on V that assumes no treatment-instrument interaction. We illustrate our methods with the estimation of the local average effect of participating in 401(k) retirement programs on savings by using data from the US Census Bureau's 1991 Survey of Income and Program Participation.

[1]  D. Rubin,et al.  Assessing the effect of an influenza vaccine in an encouragement design. , 2000, Biostatistics.

[2]  Guido W. Imbens,et al.  The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish , 2000 .

[3]  J. Robins,et al.  Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers , 1992 .

[4]  J. Qin,et al.  Semiparametric estimation and inference for distributional and general treatment effects , 2009 .

[5]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1995 .

[6]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[7]  James M. Robins,et al.  DOUBLY ROBUST INSTRUMENTAL VARIABLE REGRESSION , 2012 .

[8]  D. Wise,et al.  Do 401(K) Contributions Crowd Out Other Persoanl Saving? , 1993 .

[9]  R. Gill Non- and semi-parametric maximum likelihood estimators and the Von Mises method , 1986 .

[10]  L. Stefanski,et al.  The Calculus of M-Estimation , 2002 .

[11]  Zhiqiang Tan,et al.  Regression and Weighting Methods for Causal Inference Using Instrumental Variables , 2006 .

[12]  J. Robins Correcting for non-compliance in randomized trials using structural nested mean models , 1994 .

[13]  S G Baker,et al.  The paired availability design: a proposal for evaluating epidural analgesia during labor. , 1994, Statistics in medicine.

[14]  J. Robins,et al.  Instruments for Causal Inference: An Epidemiologist's Dream? , 2006, Epidemiology.

[15]  E. Vytlacil Independence, Monotonicity, and Latent Index Models: An Equivalence Result , 2002 .

[16]  J. Angrist,et al.  Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .

[17]  A. U.S Efficient Nonparametric Estimation of Causal Effects in Randomized Trials with Noncompliance , 2008 .

[18]  Semiparametrically Efficient Estimation of Conditional Instrumental Variables Parameters , 2009 .

[19]  Alberto Abadie Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models , 2002 .

[20]  Frank Windmeijer,et al.  Identification of causal effects on binary outcomes using structural mean models , 2010, Biostatistics.

[21]  Daniel Cooley,et al.  Modelling pairwise dependence of maxima in space , 2009 .

[22]  Joshua D. Angrist,et al.  Identification of Causal Effects Using Instrumental Variables , 1993 .

[23]  Zhiqiang Tan,et al.  A Distributional Approach for Causal Inference Using Propensity Scores , 2006 .

[24]  D. Wise,et al.  401(K) Plans and Tax-Deferred Saving , 1992 .

[25]  R. Little,et al.  Statistical Techniques for Analyzing Data from Prevention Trials: Treatment of No-Shows Using Rubin's Causal Model , 1998 .

[26]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .

[27]  Zhiqiang Tan,et al.  Marginal and Nested Structural Models Using Instrumental Variables , 2010 .

[28]  Guido W. Imbens,et al.  Average Causal Response with Variable Treatment Intensity , 1995 .

[29]  Markus Frölich,et al.  Nonparametric IV Estimation of Local Average Treatment Effects with Covariates , 2002, SSRN Electronic Journal.

[30]  Alberto Abadie Semiparametric instrumental variable estimation of treatment response models , 2003 .

[31]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1994 .