Revisiting the "midtarsal break".

The midtarsal break was first described in this journal nearly 75 years ago to explain the ability of non-human primates to lift their heel independently of the rest of the foot. Since the initial description of the midtarsal break, the calcaneocuboid joint has been assumed to be the anatomical source of this motion. Recently, however, it has been suggested that the midtarsal break may occur at the cuboid-metatarsal joint, rather than at the calcaneocuboid joint. Data compiled from X-rays, dissections, manual manipulation of living primate feet, video of captive catarrhines, and osteological specimens concur that the midtarsal break is a complex motion caused by dorsiflexion at both joints with the cuboid-metatarsal joint contributing roughly 2/3 of total midfoot dorsiflexion, and the calcaneocuboid joint only about 1/3 of total midfoot dorsiflexion. The convexity of the proximal articular surface of the fourth and fifth metatarsals and corresponding concave cuboid facets provide skeletal correlates for the presence of midfoot dorsiflexion at the cuboid-metatarsal joint. Study of hominin metatarsals from Australopithecus afarensis, A. africanus, Homo erectus, and the metatarsals and a cuboid from the OH 8 foot show little capacity for dorsiflexion at the cuboid-metatarsal joint. These results suggest that hominins may have already evolved a stable midfoot region well adapted for the push-off phase of bipedalism by at least 3.2 million years ago. These data illuminate the evolution of the longitudinal arch and show further evidence of constraints on the arboreal capacity in early hominins.

[1]  Lewis Oj The joints of the evolving foot. Part III. The fossil evidence. , 1980 .

[2]  J. DeSilva,et al.  Functional morphology of the ankle and the likelihood of climbing in early hominins , 2009, Proceedings of the National Academy of Sciences.

[3]  H. Elftman,et al.  Chimpanzee and human feet in bipedal walking , 1935 .

[4]  Hicks Jh,et al.  The mechanics of the foot. I. The joints. , 1953 .

[5]  D. Pilbeam,et al.  Postcranial functional morphology of Morotopithecus bishopi, with implications for the evolution of modern ape locomotion. , 2000, Journal of human evolution.

[6]  M. H. Day,et al.  Hominid Fossils from Bed I, Olduvai Gorge, Tanganyika: Fossil Foot Bones , 1964, Nature.

[7]  J. Napier,et al.  A New Species of The Genus Homo From Olduvai Gorge , 1964, Nature.

[8]  C. Oxnard,et al.  Functional articulation of some hominoid foot bones: implications for the Olduvai (hominid 8) foot. , 1980, American journal of physical anthropology.

[9]  Hominid Fossils from Bed I, Olduvai Gorge, Tanganyika: A Tibia and Fibula , 1964, Nature.

[10]  J. H. Hicks,et al.  The mechanics of the foot. I. The joints. , 1953, Journal of anatomy.

[11]  T D White,et al.  Evolutionary Implications of Pliocene Hominid Footprints , 1980, Science.

[12]  L. Schell Effects of pollutants on human prenatal and postnatal growth: Noise, lead, polychlorobiphenyl compounds, and toxic wastes , 1991 .

[13]  Y. Deloison Anatomie des os fossiles de pieds des hominidés d'Afrique du Sud datés entre 2,4 et 3,5 millions d'années. Interprétation quant à leur mode de locomotion , 2003 .

[14]  G. Berillon Assessing the longitudinal structure of the early hominid foot: A two-dimensional architecture analysis , 2003 .

[15]  P. Lamy The settlement of the longitudinal plantar arch of some African Plio-Pleistocene hominids: a morphological study , 1986 .

[16]  K. Kuman,et al.  Stratigraphy, artefact industries and hominid associations for Sterkfontein, member 5. , 2000, Journal of human evolution.

[17]  C. Lovejoy,et al.  Hominid tarsal, metatarsal, and phalangeal bones recovered from the Hadar Formation: 1974-1977 collections , 1982 .

[18]  R. Leakey,et al.  New evidence of the genus Homo from East Rudolf, Kenya. II. , 1973, American journal of physical anthropology.

[19]  H. Elftman The transverse tarsal joint and its control. , 1960, Clinical orthopaedics.

[20]  J. Manter Movements of the subtalar and transverse tarsal joints , 1941 .

[21]  O. J. Lewis The joints of the evolving foot. Part III. The fossil evidence. , 1980, Journal of Anatomy.

[22]  M. Crawford The anthropological genetics of the Black Caribs “Garifuna” of Central America and the Caribbean , 1983 .

[23]  J. T. Stern,et al.  Arboreality and bipedality in the Hadar hominids. , 1984, Folia primatologica; international journal of primatology.

[24]  D Schmitt,et al.  Heel contact as a function of substrate type and speed in primates. , 1995, American journal of physical anthropology.

[25]  B. Sangeorzan,et al.  The Midtarsal Joint Locking Mechanism , 2005, Foot & ankle international.

[26]  R. Kidd The past is the key to the present: thoughts on the origins of human foot structure, function and dysfunction as seen from the fossil record , 1998 .

[27]  P. Aerts,et al.  Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). , 2003, American journal of physical anthropology.

[28]  R. L. Susman Brief communication: evidence bearing on the status of Homo habilis at Olduvai Gorge. , 2008, American journal of physical anthropology.

[29]  J. DeSilva Vertical Climbing Adaptations in the Anthropoid Ankle and Midfoot: Implications for Locomotion in Miocene Catarrhines and Plio-Pleistocene Hominins. , 2008 .

[30]  O. J. Lewis The joints of the evolving foot. Part II. The intrinsic joints. , 1980, Journal of anatomy.

[31]  P. O'higgins,et al.  The OH8 foot : a reappraisal of the functional morphology of the hindfoot utilizing a multivariate analysis , 1996 .

[32]  R. Tuttle,et al.  Laetoli toes andAustralopithecus afarensis , 1991 .

[33]  D. Gomberg Functional differences of three ligaments of the transverse tarsal joint in Hominoids , 1985 .

[34]  F. Bojsen-Møller,et al.  Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. , 1979, Journal of anatomy.

[35]  M. Hamrick,et al.  Articular size and curvature as determinants of carpal joint mobility and stability in strepsirhine primates , 1996, Journal of morphology.

[36]  P. Aerts,et al.  Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). , 2002, American journal of physical anthropology.

[37]  L. Aiello,et al.  Fossils, feet and the evolution of human bipedal locomotion , 2004, Journal of anatomy.

[38]  F. Brown,et al.  Stratigraphic context of fossil hominids from the Omo group deposits: northern Turkana Basin, Kenya and Ethiopia. , 1989, American journal of physical anthropology.

[39]  Martha Tappen,et al.  Postcranial evidence from early Homo from Dmanisi, Georgia. , 2007, Nature.

[40]  J. R. Close,et al.  The function of the subtalar joint. , 1967, Clinical orthopaedics and related research.

[41]  D. Meldrum,et al.  Kinematics of the cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations. , 1991, American journal of physical anthropology.

[42]  T. White,et al.  Hominid footprints at Laetoli: facts and interpretations. , 1987, American journal of physical anthropology.

[43]  M J Shereff,et al.  In Vitro Determination of Midfoot Motion , 1989, Foot & ankle.

[44]  D. Gomberg FORM AND FUNCTION OF THE HOMINOID FOOT , 1981 .

[45]  R. Kidd Evolution of the rearfoot. A model of adaptation with evidence from the fossil record. , 1999, Journal of the American Podiatric Medical Association.

[46]  P. Aerts,et al.  The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism , 2008, Journal of Experimental Biology.

[47]  Brian G Richmond,et al.  Early Hominin Foot Morphology Based on 1.5-Million-Year-Old Footprints from Ileret, Kenya , 2009, Science.

[48]  R. Lacruz,et al.  Revised age estimates of Australopithecus-bearing deposits at Sterkfontein, South Africa. , 2002, American journal of physical anthropology.

[49]  B. Zipfel,et al.  Earliest complete hominin fifth metatarsal-Implications for the evolution of the lateral column of the foot. , 2009, American journal of physical anthropology.

[50]  R. Walter,et al.  Age of Lucy and the First Family: Single-crystal 40Ar/39Ar dating of the Denen Dora and lower Kada Hadar members of the Hadar Formation, Ethiopia , 1994 .

[51]  S. Sarrafian Functional Characteristics of the Foot and Plantar Aponeurosis under Tibiotalar Loading , 1987, Foot & ankle.

[52]  M. Day,et al.  Fossil Foot Bones , 1965, Current Anthropology.

[53]  J. T. Stern,et al.  The locomotor anatomy of Australopithecus afarensis. , 1983, American journal of physical anthropology.

[54]  D. Gebo Plantigrady and foot adaptation in African apes: implications for hominid origins. , 1992, American journal of physical anthropology.

[55]  R. L. Susman,et al.  Evolution of the Human Foot: Evidence from Plio-Pleistocene Hominids , 1983, Foot & ankle.

[56]  B. Wood Olduvai Bed I post-cranial fossils: A reassessment , 1974 .

[57]  G. Schwartz,et al.  Foot bones from Omo: implications for hominid evolution. , 2006, American journal of physical anthropology.

[58]  J T Stern,et al.  Functional Morphology of Homo habilis , 1982, Science.

[59]  William Edward Harry Harcourt-Smith,et al.  Form and function in the hominoid tarsal skeleton , 2003 .