Portfolio optimization with pw-robustness

This paper investigates a portfolio optimization problem under uncertainty on the stock returns, where the manager seeks to achieve an appropriate trade-off between the expected portfolio return and the risk of loss. The uncertainty set consists of a finite set of scenarios occurring with equal probability. We introduce a new robustness criterion, called pw-robustness, which seeks to maximize the portfolio return in a proportion p of scenarios and guarantees a minimum return over all scenarios. We model this optimization problem as a mixed-integer programming problem. Through extensive numerical experiments, we identify the instances that can be solved to optimality in an acceptable time using off-the-shelf software. For the instances that cannot be solved to optimality within the time frame, we propose and test a heuristic that exhibits excellent practical performance in terms of computation time and solution quality for the problems we consider. This new criterion and our heuristic methods therefore exhibit great promise to tackle robustness problems when the uncertainty set consists of a large number of scenarios.

[1]  D. Bertsimas,et al.  Shortfall as a risk measure: properties, optimization and applications , 2004 .

[2]  Sigifredo Laengle,et al.  Mean-Variance Portfolio Selection With the Ordered Weighted Average , 2017, IEEE Transactions on Fuzzy Systems.

[3]  A. Wächter,et al.  Practical algorithms for value-at-risk portfolio optimization problems , 2015 .

[4]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[5]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[6]  George G. Polak,et al.  Risk management strategies via minimax portfolio optimization , 2010, Eur. J. Oper. Res..

[7]  Maria Grazia Speranza,et al.  Twenty years of linear programming based portfolio optimization , 2014, Eur. J. Oper. Res..

[8]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[9]  Romeo Rizzi,et al.  A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem , 2007, Eur. J. Oper. Res..

[10]  Garud Iyengar,et al.  Fast gradient descent method for Mean-CVaR optimization , 2013, Ann. Oper. Res..

[11]  Hariharan Kandasamy,et al.  Portfolio Selection Under Various Risk Measures , 2008 .

[12]  J. Merigó,et al.  The connection between distortion risk measures and ordered weighted averaging operators , 2013 .

[13]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[14]  Lei Wu,et al.  New models for the robust shortest path problem: complexity, resolution and generalization , 2013, Ann. Oper. Res..

[15]  Aurélie Thiele,et al.  Data-driven portfolio management with quantile constraints , 2015, OR Spectrum.

[16]  Javier F. Pena,et al.  Optimization Methods in Finance: Stochastic programming: theory and algorithms , 2006 .

[17]  Frank J. Fabozzi,et al.  60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..

[18]  Helmut Mausser,et al.  Robust scenario-based value-at-risk optimization , 2016, Ann. Oper. Res..

[19]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[20]  Wlodzimierz Ogryczak,et al.  Multiple criteria linear programming model for portfolio selection , 2000, Ann. Oper. Res..

[21]  Chang-Chun Lin,et al.  Comments on "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem" , 2009, Eur. J. Oper. Res..

[22]  W. Ogryczak,et al.  LP solvable models for portfolio optimization: a classification and computational comparison , 2003 .

[23]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[24]  Giuseppe Carlo Calafiore,et al.  Direct data-driven portfolio optimization with guaranteed shortfall probability , 2013, Autom..

[25]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[26]  Stefano Benati,et al.  Using medians in portfolio optimization , 2015, J. Oper. Res. Soc..

[27]  Patrice Perny,et al.  A decision-theoretic approach to robust optimization in multivalued graphs , 2006, Ann. Oper. Res..

[28]  Wlodzimierz Ogryczak,et al.  On solving linear programs with the ordered weighted averaging objective , 2003, Eur. J. Oper. Res..

[29]  Renata Mansini,et al.  Linear Models for Portfolio Optimization , 2015 .

[30]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[31]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[32]  Byung Ha Lim,et al.  A Minimax Portfolio Selection Rule with Linear Programming Solution , 1998 .