A Short Introduction to Infinite Automata

Infinite automata are of interest not only in the verification of systems with infinite state spaces, but also as a natural (and so far underdeveloped) framework for the study of formal languages. In this survey, we discuss some basic types of infinite automata, which are based on the so-called prefix-recognizable, synchronized rational, and rational transition graphs, respectively. We present characterizations of these transition graphs (due to Muller/Schupp and to Caucal and students), mention results on their power to recognize languages, and discuss the status of central algorithmic problems (like reachability of given states, or decidability of the first-order theory).

[1]  Jacques Sakarovitch,et al.  Synchronized Rational Relations of Finite and Infinite Words , 1993, Theor. Comput. Sci..

[2]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[3]  Martti Penttonen,et al.  One-Sided and Two-Sided Context in Formal Grammars , 1974, Inf. Control..

[4]  Javier Esparza,et al.  Efficient Algorithms for Model Checking Pushdown Systems , 2000, CAV.

[5]  Colin Stirling,et al.  Rational Graphs Trace Context-Sensitive Languages , 2001, MFCS.

[6]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[7]  Chloe Rispal,et al.  The synchronized graphs trace the context-sensitive languages , 2003, INFINITY.

[8]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[9]  Didier Caucal,et al.  An Internal Presentation of Regular Graphs by Prefix-Recognizable Graphs , 2001, Theory of Computing Systems.

[10]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[11]  Christophe Morvan,et al.  On Rational Graphs , 2000, FoSSaCS.

[12]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[13]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[14]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[15]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[16]  Javier Esparza,et al.  A BDD-Based Model Checker for Recursive Programs , 2001, CAV.

[17]  Javier Esparza,et al.  More infinite results , 2001, INFINITY.

[18]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[19]  Christof Löding Model-Checking Infinite Systems Generated by Ground Tree Rewriting , 2002, FoSSaCS.

[20]  J. R. Büchi Regular Canonical Systems , 1964 .

[21]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[22]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[23]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[24]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[25]  Ahmed Bouajjani,et al.  Languages, Rewriting Systems, and Verification of Infinite-State Systems , 2001, ICALP.

[26]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[27]  Didier Caucal,et al.  On the transition graphs of turing machines , 2001, Theor. Comput. Sci..