A Three-Dimensional Simulation Study of the Novel Comb-Like-Channel Field-Effect Transistors for the 5-nm Technology Node and Beyond

A novel comb-like-channel field-effect transistor (CombFET), which is the combination of the fin field-effect transistor (FinFET) and nanosheet FET (NshFET) geometries in the channel region, is proposed and evaluated numerically for the first time. Our simulations show that: 1) with the same footprint, CombFET ON-current is 43% higher than FinFET and 53% higher than gate-all-around FET (GAAFET) due to its larger effective channel width and relieved channel quantum confinement and 2) CombFETs have great advantages in performance optimization through surface orientation over FinFETs and NshFETs. Thanks to the unique structural design, CombFET can also be used to improve or eliminate the bending or adhesion effects between nanosheets/comb teeth.

[1]  Yabin Sun,et al.  Vertically Stacked Nanosheets Tree-Type Reconfigurable Transistor With Improved ON-Current , 2022, IEEE Transactions on Electron Devices.

[2]  H. Mertens,et al.  Forksheet FETs for Advanced CMOS Scaling: Forksheet-Nanosheet Co-Integration and Dual Work Function Metal Gates at 17nm N-P Space , 2021, 2021 Symposium on VLSI Technology.

[3]  F. Andrieu,et al.  7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing , 2020, 2020 IEEE Symposium on VLSI Technology.

[4]  J. Ryckaert,et al.  Novel forksheet device architecture as ultimate logic scaling device towards 2nm , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[5]  Nicolas Loubet,et al.  Channel Geometry Impact and Narrow Sheet Effect of Stacked Nanosheet , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[6]  J. G. Lee,et al.  Impact of aggressive fin width scaling on FinFET device characteristics , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[7]  D. Corliss,et al.  Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET , 2017, 2017 Symposium on VLSI Technology.

[8]  Ho-Kyu Kang,et al.  A practical Si nanowire technology with nanowire-on-insulator structure for beyond 10nm logic technologies , 2013, 2013 IEEE International Electron Devices Meeting.

[9]  J. A. Ott,et al.  Scaling of SOI FinFETs down to fin width of 4 nm for the 10nm technology node , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[10]  A. Gnudi,et al.  A Low-Field Mobility Model for Bulk and Ultrathin-Body SOI p-MOSFETs With Different Surface and Channel Orientations , 2010, IEEE Transactions on Electron Devices.

[11]  Mingu Kang,et al.  FinFET SRAM Optimization With Fin Thickness and Surface Orientation , 2010, IEEE Transactions on Electron Devices.

[12]  Kaushik Roy,et al.  Optimization of Surface Orientation for High-Performance, Low-Power and Robust FinFET SRAM , 2006, IEEE Custom Integrated Circuits Conference 2006.

[13]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[14]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[15]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[16]  G. Paasch,et al.  A Modified Local Density Approximation. Electron Density in Inversion Layers , 1982 .

[17]  Harry L. Levinson,et al.  I NTERNATIONAL R OADMAP FOR D EVICES AND S YSTEMS , 2021 .

[18]  Lawrence T. Clark,et al.  Comparing bulk-Si FinFET and gate-all-around FETs for the 5 ​nm technology node , 2021, Microelectron. J..

[19]  Leland Chang,et al.  CMOS circuit performance enhancement by surface orientation optimization , 2004, IEEE Transactions on Electron Devices.

[20]  S. A. Mujtaba ADVANCED MOBILITY MODELS FOR DESIGN AND SIMULATION OF DEEP SUBMICROMETER MOSFETS , 1995 .