Single-view phase retrieval of an extended sample by exploiting edge detection and sparsity.

We propose a new approach to robustly retrieve the exit wave of an extended sample from its coherent diffraction pattern by exploiting sparsity of the sample's edges. This approach enables imaging of an extended sample with a single view, without ptychography. We introduce nonlinear optimization methods that promote sparsity, and we derive update rules to robustly recover the sample's exit wave. We test these methods on simulated samples by varying the sparsity of the edge-detected representation of the exit wave. Our tests illustrate the strengths and limitations of the proposed method in imaging extended samples.

[1]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[2]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[3]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[4]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[5]  Andreas Menzel,et al.  Reconstructing state mixtures from diffraction measurements , 2013, Nature.

[6]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[7]  Joel A. Tropp,et al.  Sparse Approximation Via Iterative Thresholding , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[8]  Jiasong Mu,et al.  Throat polyp detection based on compressed big data of voice with support vector machine algorithm , 2014, EURASIP Journal on Advances in Signal Processing.

[9]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[10]  Xiaojing Huang,et al.  Data preparation and evaluation techniques for x-ray diffraction microscopy. , 2010, Optics express.

[11]  Garth J. Williams,et al.  Three-dimensional mapping of a deformation field inside a nanocrystal , 2006, Nature.

[12]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[13]  Tom Peterka,et al.  Parallel ptychographic reconstruction. , 2014, Optics express.

[14]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[15]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.

[16]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[17]  Hamid Krim,et al.  A Shearlet Approach to Edge Analysis and Detection , 2009, IEEE Transactions on Image Processing.

[18]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[19]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[20]  Sven Leyffer,et al.  Visualizing and Improving the Robustness of Phase Retrieval Algorithms , 2015, ICCS.

[21]  A Pein,et al.  Using sparsity information for iterative phase retrieval in x-ray propagation imaging. , 2016, Optics express.

[22]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[23]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[24]  Cishen Zhang,et al.  Robust Compressive Phase Retrieval via L1 Minimization With Application to Image Reconstruction , 2013, ArXiv.

[25]  Stefan M. Wild,et al.  Estimating Derivatives of Noisy Simulations , 2012, TOMS.

[26]  Shashidhara Marathe,et al.  Coherent diffraction surface imaging in reflection geometry. , 2010, Optics express.

[27]  Garth J. Williams,et al.  Keyhole coherent diffractive imaging , 2008 .

[28]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Bin Dong,et al.  An Efficient Algorithm for ℓ0 Minimization in Wavelet Frame Based Image Restoration , 2013, J. Sci. Comput..

[30]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[31]  Fei Wen,et al.  Iterative projection approach for phase retrieval of semi-sparse wave field , 2014, EURASIP Journal on Advances in Signal Processing.

[32]  Tony F. Chan,et al.  A Novel Sparsity Reconstruction Method from Poisson Data for 3D Bioluminescence Tomography , 2012, J. Sci. Comput..

[33]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[34]  K A Nugent,et al.  Use of a complex constraint in coherent diffractive imaging. , 2010, Optics express.

[35]  David M. Paganin,et al.  Coherent X-Ray Optics , 2006 .

[36]  Raymond H. Chan,et al.  Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..

[37]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[38]  Bin Dong,et al.  ℓ0 Minimization for wavelet frame based image restoration , 2011, Math. Comput..

[39]  Lieven De Lathauwer,et al.  Unconstrained Optimization of Real Functions in Complex Variables , 2012, SIAM J. Optim..

[40]  Damiana Lazzaro,et al.  Edge-preserving wavelet thresholding for image denoising , 2007 .

[41]  J. Kirz,et al.  Incorrect support and missing center tolerances of phasing algorithms. , 2010, Optics express.