Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model

Predicting the one-step-ahead volatility is of great importance in measuring and managing investment risk more accurately. Taking into consideration the main characteristics of the conditional volatility of asset returns, an asymmetric Autoregressive Conditional Heteroscedasticity (ARCH) model is estimated. The model is extended to also capture (i) the skewness and excess kurtosis that the asset returns exhibit, and (ii) the fractional integration of the conditional variance. The model, which takes into consideration both the fractional integration of the conditional variance as well as the skewed and leptokurtic conditional distribution of innovations, produces the most accurate one-day-ahead volatility forecasts. The study recommends to portfolio managers and traders that extended ARCH models generate more accurate volatility forecasts of stock returns.

[1]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[2]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[3]  T. Bollerslev,et al.  Intraday and interday volatility in the Japanese stock market , 2000 .

[4]  Klaassen Improving GARCH Volatility Forecasts with Regime-Switching GARCH Klaassen, F.J.G.M , 2001 .

[5]  S. Laurent,et al.  Value-at-Risk for long and short trading positions , 2003 .

[6]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[7]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[8]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[9]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[10]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[11]  Michael McAleer,et al.  A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors , 2001 .

[12]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[13]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[14]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[15]  Stavros Degiannakis,et al.  The Use of GARCH Models in VaR Estimation , 2004 .

[16]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[17]  Chris Brooks,et al.  The Effect of Asymmetries on Stock Index Return Value‐at‐Risk Estimates , 2003 .

[18]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[19]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[20]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[21]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[22]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[23]  T. Bollerslev,et al.  Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon , 1999 .

[24]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[25]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[26]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[27]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[28]  Jon Vilasuso Forecasting exchange rate volatility , 2002 .

[29]  C. Granger,et al.  Forecasting Volatility in Financial Markets: A Review , 2003 .

[30]  E. Xekalaki,et al.  Autoregressive Conditional Heteroscedasticity (ARCH) Models: A Review , 2004 .

[31]  T. Stengos,et al.  Intra-Day Features of Realized Volatility: Evidence from an Emerging Market , 2002 .

[32]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[33]  C. Gouriéroux ARCH Models and Financial Applications , 1997 .

[34]  Yiu Kuen Tse,et al.  The conditional heteroscedasticity of the yen-dollar exchange rate , 1998 .